These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 421899)

  • 1. Inhibition of glutathione reductase by interaction of 2, 4, 6-trinitrobenzenesulfonate with the active-site dithiol.
    Carlberg I; Mannervik B
    FEBS Lett; 1979 Feb; 98(2):263-6. PubMed ID: 421899
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidase activity of glutathione reductase effected by 2,4,5-trinitrobenzenesulfonate.
    Carlberg I; Mannervik B
    FEBS Lett; 1980 Jun; 115(2):265-8. PubMed ID: 7398886
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of 2,4,6-trinitrobenzenesulfonate on mercuric reductase, glutathione reductase and lipoamide dehydrogenase.
    Carlberg I; Sahlman L; Mannervik B
    FEBS Lett; 1985 Jan; 180(1):102-6. PubMed ID: 3917936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dinitrophenyl modification on oxidation-reduction of glutathione reductase from yeast.
    Maeda-Yorita K; Aki K
    J Biochem; 1985 Jun; 97(6):1795-801. PubMed ID: 4030749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of cathepsin D by 2,4,6-trinitrobenzenesulphonic acid [proceedings].
    Malliopoulou T; Rakitzis ET
    Biochem Soc Trans; 1978; 6(6):1192-4. PubMed ID: 744387
    [No Abstract]   [Full Text] [Related]  

  • 6. Penetration of 2,4,5-trinitrobenzenesulfonate into human erythrocytes. Consequences for studies on phospholipid asymmetry.
    Haest CW; Kamp D; Deuticke B
    Biochim Biophys Acta; 1981 Jan; 640(2):535-43. PubMed ID: 7213904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transbilayer distribution of phospholipids in photoreceptor membrane studied with trinitrobenzenesulfonate alone and in combination with phospholipase D.
    Drenthe EH; Klompmakers AA; Bonting SL; Daemen FJ
    Biochim Biophys Acta; 1980 Dec; 603(1):130-41. PubMed ID: 7448183
    [No Abstract]   [Full Text] [Related]  

  • 8. Enhancement of 14S and 30S dynein adenosine triphosphatase activities by modification of amino groups with trinitrobenzenesulfonate. A comparison with modification of SH groups.
    Shimizu T
    J Biochem; 1979 Jun; 85(6):1421-6. PubMed ID: 156723
    [No Abstract]   [Full Text] [Related]  

  • 9. 2,4,6-Trinitrobenzenesulfonate labels an essential amino group near the bound phosphate at the catalytic site of mitochondrial F1-ATPase.
    Ting LP; Wang JH
    Biochem Biophys Res Commun; 1981 Aug; 101(3):934-8. PubMed ID: 6458293
    [No Abstract]   [Full Text] [Related]  

  • 10. Trinitrobenzene sulfonic acid effects in two amphibian model systems.
    Mette SA; Ruben LN
    Cell Immunol; 1980 Aug; 53(2):298-306. PubMed ID: 7407937
    [No Abstract]   [Full Text] [Related]  

  • 11. A comparison of the glutamate dehydrogenase catalyzed oxidation of NADPH by trinitrobenzenesulfonate with the uncatalyzed reaction.
    Brown A; Fisher HF
    J Am Chem Soc; 1976 Sep; 98(18):5682-8. PubMed ID: 956572
    [No Abstract]   [Full Text] [Related]  

  • 12. Pyruvate carboxylase: effect of reaction components and analogues of acetyl-coenzyme A on the rate of inactivation in the presence and absence of trinitrobenzene sulphonate.
    Scrutton MC; Pearce PH; Fatebene F
    Eur J Biochem; 1977 Jun; 76(1):219-31. PubMed ID: 18350
    [No Abstract]   [Full Text] [Related]  

  • 13. Specific labelling of the active site of the phosphate translocator in spinach chloroplasts by 2,4,6-trinitrobenzene sulfonate.
    Flügge UI; Heldt HW
    Biochem Biophys Res Commun; 1978 Sep; 84(1):37-44. PubMed ID: 728132
    [No Abstract]   [Full Text] [Related]  

  • 14. Modification of the allosteric activator site of Escherichia coli ADP-glucose synthetase by trinitrobenzenesulfonate.
    Carlson CA; Preiss J
    Biochemistry; 1981 Dec; 20(26):7519-28. PubMed ID: 6275883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of glutathione reductase by oncomodulin.
    Palmer EJ; MacManus JP; Mutus B
    Arch Biochem Biophys; 1990 Feb; 277(1):149-54. PubMed ID: 2306116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trinitrophenylation of smooth muscle myosin.
    Srivastava S; Ikebe M; Hartshorne DJ
    Biochem Biophys Res Commun; 1985 Jan; 126(2):748-55. PubMed ID: 3156591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of primary amino groups in rat heart sarcolemma by 2,4,6-trinitrobenzene sulfonic acid in respect to the activities of (Na+ + K+)-ATPase, Na+-ATPase and pNPPase. Function of the potassium binding sites.
    Breier A; Monosíková R; Ziegelhöffer A
    Gen Physiol Biophys; 1987 Feb; 6(1):103-8. PubMed ID: 3036642
    [No Abstract]   [Full Text] [Related]  

  • 18. Chemical modification of the Ca2+ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Use of 2, 4, 6-trinitrobenzenesulfonate to show functional movements of the ATPase molecule.
    Yamamoto T; Tonomura Y
    J Biochem; 1976 Apr; 79(4):693-707. PubMed ID: 132437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The determination of protease activity in tissue homogenates and extracts with trinitrobenzenesulphonic acid (author's transl)].
    Valet G
    Z Klin Chem Klin Biochem; 1971 Nov; 9(6):491-3. PubMed ID: 5173528
    [No Abstract]   [Full Text] [Related]  

  • 20. Chemical modification by 2,4,6-trinitrobenzenesulfonic acid (TNBS) of an essential amino group in 3-ketovalidoxylamine A C-N lyase.
    Takeuchi M; Neyazaki K; Matsui K
    Chem Pharm Bull (Tokyo); 1990 May; 38(5):1419-20. PubMed ID: 2393971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.