These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 421901)

  • 21. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum.
    Fry B; Gest H; Hayes JM
    FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. X-ray crystallographic analysis of the sulfur carrier protein SoxY from Chlorobium limicola f. thiosulfatophilum reveals a tetrameric structure.
    Stout J; Van Driessche G; Savvides SN; Van Beeumen J
    Protein Sci; 2007 Apr; 16(4):589-601. PubMed ID: 17327392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ferredoxin-dependent reduction of nicotinamide-adenine dinucleotides with hydrogen gas by subcellular preparations from the photosynthetic bacterium, Chromatium.
    Buchanan BB; Bachofen R
    Biochim Biophys Acta; 1968 Nov; 162(4):607-10. PubMed ID: 4387275
    [No Abstract]   [Full Text] [Related]  

  • 24. Control of Oxidative Sulfur Metabolism of Chlorobium limicola forma thiosulfatophilum.
    Cork D; Mathers J; Maka A; Srnak A
    Appl Environ Microbiol; 1985 Feb; 49(2):269-72. PubMed ID: 16346713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photosynthetic reaction center transients, P435 and P424, in Chromatium D.
    Seibert M; DeVault D
    Biochim Biophys Acta; 1971 Dec; 253(2):396-411. PubMed ID: 5133535
    [No Abstract]   [Full Text] [Related]  

  • 26. Membrane-associated c-type cytochromes from the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum: purification and characterization of cytochrome c553.
    Albouy D; Sturgis JN; Feiler U; Nitschke W; Robert B
    Biochemistry; 1997 Feb; 36(7):1927-32. PubMed ID: 9048580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of subunits of flavocytochromes c derived from Chlorobium limicola f. thiosulfatophilum and Chromatium vinosum.
    Yamanaka T; Fukumori Y; Okunuki K
    Anal Biochem; 1979 May; 95(1):209-13. PubMed ID: 227287
    [No Abstract]   [Full Text] [Related]  

  • 28. Oxidation-reduction reactions in the photosynthetic bacterium Chromatium. II. Dependence of light reactions on intensity of irradiation and quantum efficiency of cytochrome oxidation.
    OLSON JM; CHANCE B
    Arch Biochem Biophys; 1960; 88():40-53. PubMed ID: 14428813
    [No Abstract]   [Full Text] [Related]  

  • 29. L-aspartate transport in the photosynthetic bacterium Chromatium vinosum.
    Cobb AD; Knaff DB
    Arch Biochem Biophys; 1983 Aug; 225(1):86-94. PubMed ID: 6614931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly purified photosynthetic reaction center (PscA/cytochrome c551)2 complex of the green sulfur bacterium Chlorobium limicola.
    Oh-oka H; Kakutani S; Kamei S; Matsubara H; Iwaki M; Itoh S
    Biochemistry; 1995 Oct; 34(40):13091-7. PubMed ID: 7548069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An enriched reaction center preparation from green photosynthetic bacteria.
    Olson JM; Giddings TH; Shaw EK
    Biochim Biophys Acta; 1976 Nov; 449(2):197-208. PubMed ID: 990292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lysine and arginine transport in the photosynthetic bacterium Chromatium vinosum.
    Kim YA; Knaff DB
    Arch Biochem Biophys; 1988 Jan; 260(1):134-8. PubMed ID: 3124743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoreduction and reoxidation of the three iron-sulfur clusters of reaction centers of green sulfur bacteria.
    Sétif P; Seo D; Sakurai H
    Biophys J; 2001 Sep; 81(3):1208-19. PubMed ID: 11509338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photosynthetic oxidation of MnS and FeS by Chlorobium spp.
    Borrego C; García-Gil J
    Microbiologia; 1995 Sep; 11(3):351-8. PubMed ID: 7576351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-induced uptake of inorganic phosphate in cell-free extracts of obligately anaerobic photosynthetic bacteria.
    WILLIAMS AM
    Biochim Biophys Acta; 1956 Mar; 19(3):570. PubMed ID: 13315332
    [No Abstract]   [Full Text] [Related]  

  • 36. Identification of inner- and outer-sphere reaction pathways in the reduction of iron-sulphur proteins with a chromium (II)-macrocycle complex.
    Adzamli IK; Henderson RA; Ong H; Sykes AG; Cammack R; Rao KK
    Biochem Biophys Res Commun; 1982 Apr; 105(4):1582-9. PubMed ID: 7103972
    [No Abstract]   [Full Text] [Related]  

  • 37. Redistribution of electric charge accompanying photosynthetic electron transport in Chromatium.
    Case GD; Parson WW
    Biochim Biophys Acta; 1973 Apr; 292(3):677-84. PubMed ID: 4705448
    [No Abstract]   [Full Text] [Related]  

  • 38. Identification of primary photosynthetic processes.
    Leigh JS; Dutton PL
    Ann N Y Acad Sci; 1973 Dec; 222():838-45. PubMed ID: 4361883
    [No Abstract]   [Full Text] [Related]  

  • 39. [High potential iron-sulfur protein from Thiocapsa roseopersicina].
    Zorin NA; Gogotov IN
    Biokhimiia; 1983 Jul; 48(7):1181-7. PubMed ID: 6615927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [ATP-dependent citrate lyase in the green phototrophic bacterium, Chlorobium limicola].
    Sintsov NV; Ivanovskiĭ RN; Kondrat'eva EN
    Mikrobiologiia; 1980; 49(4):514-6. PubMed ID: 6774213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.