These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 4219266)

  • 1. Presence of growth factors for Methanobacterium ruminantium in both gram-positive and gram-negative bacteria.
    Prins RA
    Antonie Van Leeuwenhoek; 1974; 40(4):585-9. PubMed ID: 4219266
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of leukocyte hydrolases on bacteria. I. Degradation of 14C-labeled Streptococcus and Staphylococcus by leukocyte lysates in vitro.
    Lahav M; Ne'eman N; Adler E; Ginsburg I
    J Infect Dis; 1974 May; 129(5):528-37. PubMed ID: 4823582
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of glucosamine utilization in Staphylococcus aureus and Escherichia coli.
    Imada A; Nozaki Y; Kawashima F; Yoneda M
    J Gen Microbiol; 1977 Jun; 100(2):329-37. PubMed ID: 330812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of fura-2/AM to measure intracellular free calcium in Selenomonas ruminantium.
    Nakamura I; Nakai Y; Izumi H
    Tohoku J Exp Med; 1996 Aug; 179(4):291-4. PubMed ID: 8944431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium.
    Taylor CD; McBride BC; Wolfe RS; Bryant MP
    J Bacteriol; 1974 Nov; 120(2):974-5. PubMed ID: 4376145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear magnetic resonance studies on wheat germ agglutinin-monomeric amino sugar interactions.
    Jordan F; Bahr H; Patrick J; Woo PW
    Arch Biochem Biophys; 1981 Mar; 207(1):81-6. PubMed ID: 6894523
    [No Abstract]   [Full Text] [Related]  

  • 7. Incorporation of 2-acetamido-2-deoxy-D-glucose into the peptidoglycan of Streptococcus mutans.
    Doyle RJ; Nesbitt WE; Alley T; Staat RH; Taylor KG
    Carbohydr Res; 1981 Jul; 93(2):308-11. PubMed ID: 7020938
    [No Abstract]   [Full Text] [Related]  

  • 8. Incorporation of N-acetylglucosamine into the core region of the cell wall lipopolysaccharide of Escherichia coli.
    Stein R; Heath EC
    J Biol Chem; 1979 May; 254(10):4101-9. PubMed ID: 374407
    [No Abstract]   [Full Text] [Related]  

  • 9. Growth and morphology of Streptococcus bovis and of mixed rumen bacteria in the presence of aflatoxin B1, in vitro.
    Mathur CF; Smith RC; Hawkins GE
    J Dairy Sci; 1976 Mar; 59(3):455-8. PubMed ID: 1262566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous incorporation of N-acetylglucosamine and N-fluoroacetylglucosamine into hyaluronic acid by mammalian cells.
    Kent PW; Winterbourne DJ
    Biochem Soc Trans; 1977; 5(2):439-40. PubMed ID: 902857
    [No Abstract]   [Full Text] [Related]  

  • 11. N-acetylglucosamine binding activity in extracts of adult newt skin.
    Atnip KD; Hade EP; Donaldson DJ
    Comp Biochem Physiol A Comp Physiol; 1988; 90(3):475-9. PubMed ID: 2901319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel cell-binding activity specific for N-acetyl-D-glucosamine in an Escherichia coli strain.
    Väisänen-Rhen V; Korhonen TK; Finne J
    FEBS Lett; 1983 Aug; 159(1-2):233-6. PubMed ID: 6409669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysis of gram-negative organisms and the role of versene.
    REPASKE R
    Biochim Biophys Acta; 1958 Nov; 30(2):225-32. PubMed ID: 13607436
    [No Abstract]   [Full Text] [Related]  

  • 14. Transport of N-acetyl-D-mannosamine and N-acetyl-D-glucosamine in Escherichia coli K1: effect on capsular polysialic acid production.
    Revilla-Nuin B; Reglero A; Martínez-Blanco H; Bravo IG; Ferrero MA; Rodríguez-Aparicio LB
    FEBS Lett; 2002 Jan; 511(1-3):97-101. PubMed ID: 11821056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terminal glycosylation in rat hepatic Golgi fractions: heterogeneous locations for sialic acid and galactose acceptors and their transferases.
    Bergeron JJ; Paiement J; Khan MN; Smith CE
    Biochim Biophys Acta; 1985 Dec; 821(3):393-403. PubMed ID: 2934093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of the nag regulon of Escherichia coli by N-acetylglucosamine and glucosamine: role of the cyclic AMP-catabolite activator protein complex in expression of the regulon.
    Plumbridge JA
    J Bacteriol; 1990 May; 172(5):2728-35. PubMed ID: 2158978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of the nucleic acids of Escherichia coli and rumen bacteria by sheep.
    Smith RC; Moussa NM; Hawkins GE
    Br J Nutr; 1974 Nov; 32(3):529-37. PubMed ID: 4611474
    [No Abstract]   [Full Text] [Related]  

  • 18. In-vitro effect of edta-tris-lysozyme solutions on selected pathogenic bacteria.
    Wooley RE; Blue JL
    J Med Microbiol; 1975 Feb; 8(1):189-94. PubMed ID: 805241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the lysozme-catalyzed hydrolysis and transglycosylation of N-acetyl-D-glucosamine oligomers by high-pressure liquid chromatography.
    Eikeren PV; McLaughin H
    Anal Biochem; 1977 Feb; 77(2):513-22. PubMed ID: 842833
    [No Abstract]   [Full Text] [Related]  

  • 20. A study of cultures of rumen anaerobic bacteria in the presence of excess riboflavine (vitamin B2).
    Hobson PN; Summers R
    Proc Nutr Soc; 1969 Sep; 28(2):53A-54A. PubMed ID: 4901038
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.