These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 4219753)

  • 41. Purified NADPH cytochrome P-450 reductase. Interaction with hepatic microsomes and phospholipid vesicles.
    Gum JR; Strobel HW
    J Biol Chem; 1979 May; 254(10):4177-85. PubMed ID: 108270
    [No Abstract]   [Full Text] [Related]  

  • 42. Studies on three microsomal electron transfer enzyme systems. Specificity of electron flow pathways.
    Jansson I; Schenkman JB
    Arch Biochem Biophys; 1977 Jan; 178(1):89-107. PubMed ID: 13723
    [No Abstract]   [Full Text] [Related]  

  • 43. Studies on the microsomal electron-transport system of anaerobically grown yeast. V. Purification and characterization of NADPH-cytochrome c reductase.
    Kubota S; Yoshida Y; Kumaoka H; Furumichi A
    J Biochem; 1977 Jan; 81(1):197-205. PubMed ID: 14931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rate-limiting step in the reconstituted microsomal drug hydroxylase system.
    Imai Y; Sato R; Iyanagi T
    J Biochem; 1977 Nov; 82(5):1237-46. PubMed ID: 412842
    [No Abstract]   [Full Text] [Related]  

  • 45. Effects of morphine sulfate on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.
    Datta RK; Johnson EA; Stenger RJ
    Arch Int Pharmacodyn Ther; 1976 Oct; 223(2):180-6. PubMed ID: 826227
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of detergents on the reduction of tetrazolium salts.
    Liochev SI; Batinic-Haberle I; Fridovich I
    Arch Biochem Biophys; 1995 Dec; 324(1):48-52. PubMed ID: 7503558
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Relationship between the reduction of oxygen, artificial acceptors and cytochrome P-450 by NADPH--cytochrome c reductase.
    Lyakhovich V; Mishin V; Pokrovsky A
    Biochem J; 1977 Nov; 168(2):133-9. PubMed ID: 202259
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Superoxide anion involvement in NBT reduction catalyzed by NADPH-cytochrome P-450 reductase: a pitfall.
    Auclair C; Torres M; Hakim J
    FEBS Lett; 1978 May; 89(1):26-8. PubMed ID: 207567
    [No Abstract]   [Full Text] [Related]  

  • 49. Synergistic regulation of fetal rat liver nicotinamide adenine dinucleotide phosphate (reduced form) cytochrome c reductase activity: effects of L-triiodothyronine and hydrocortisone.
    Kriz BM; Gates JA; Read FE; Fong BB
    Endocrinology; 1982 Jun; 110(6):2145-50. PubMed ID: 6804220
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vanadate-dependent NAD(P)H oxidation by microsomal enzymes.
    Reif DW; Coulombe RA; Aust SD
    Arch Biochem Biophys; 1989 Apr; 270(1):137-43. PubMed ID: 2494940
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aqueous soluble tetrazolium/formazan MTS as an indicator of NADH- and NADPH-dependent dehydrogenase activity.
    Dunigan DD; Waters SB; Owen TC
    Biotechniques; 1995 Oct; 19(4):640-9. PubMed ID: 8777059
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of acute and chronic administration of methadone hydrochloride on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.
    Datta RK; Johnson EA; Bhattacharjee G; Stenger RJ
    Arch Int Pharmacodyn Ther; 1976 Mar; 220(1):86-93. PubMed ID: 821409
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Reconstitution of the monooxygenase system in a solution and in an immobilized phospholipid layer].
    Budennaia TIu; Dobrynina OV; Korneva EN; Lazarevich VG; Kuznetsova GP
    Biokhimiia; 1983 Dec; 48(12):2002-8. PubMed ID: 6423000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Liver microsomal drug-metabolizing enzyme system: functional components and their properties.
    Lu AY
    Fed Proc; 1976 Nov; 35(13):2460-3. PubMed ID: 824157
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cytochrome P-450 and NADPH cytochrome c reductase in rat brain: formation of catechols and reactive catechol metabolites.
    Sasame HA; Ames MM; Nelson SD
    Biochem Biophys Res Commun; 1977 Oct; 78(3):919-26. PubMed ID: 410418
    [No Abstract]   [Full Text] [Related]  

  • 56. Redox properties of the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 and reduced nicotinamide adenine dinucleotide-cytochrome b5 reductases.
    Iyanagi T; Makino N; Mason HS
    Biochemistry; 1974 Apr; 13(8):1701-10. PubMed ID: 4151581
    [No Abstract]   [Full Text] [Related]  

  • 57. Energetics of the oxidase activity of NADPH-cytochrome P-450 reductase.
    Taskar PK; Prongay A; Chattopadhyay SK; Das YT; Brown HD
    Cancer Biochem Biophys; 1983; 6(4):269-73. PubMed ID: 6413051
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reductase enzyme expression across the National Cancer Institute Tumor cell line panel: correlation with sensitivity to mitomycin C and EO9.
    Fitzsimmons SA; Workman P; Grever M; Paull K; Camalier R; Lewis AD
    J Natl Cancer Inst; 1996 Mar; 88(5):259-69. PubMed ID: 8614004
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Destruction of heme and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase.
    Guengerich FP
    Biochemistry; 1978 Aug; 17(17):3633-9. PubMed ID: 28754
    [No Abstract]   [Full Text] [Related]  

  • 60. Characteristics of a microsomal dechlorination system.
    Van Dyke RA; Gandolfi AJ
    Mol Pharmacol; 1975 Nov; 11(6):809-17. PubMed ID: 813109
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.