These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 4221005)

  • 1. Metabolic activity of starch granules from the tapioca plant. II. Functional activity of starch granules from tuber.
    Viswanathan PN; Krishnan PS
    Indian J Biochem; 1965 Jun; 2(2):69-72. PubMed ID: 4221005
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolic activity of starch granules from the tapioca (Manihot utilissima) plant: IV. Further studies on the enzyme make-up of starch granules.
    Viswanathan PN
    Indian J Biochem; 1967 Mar; 4(1):6-8. PubMed ID: 4228209
    [No Abstract]   [Full Text] [Related]  

  • 3. Enzymic mechanism of starch synthesis in ripening rice grains. 3. Mechanism of the sucrose-starch conversion.
    Murata T; Sugiyama T; Minamikawa T; Akazawa T
    Arch Biochem Biophys; 1966 Jan; 113(1):34-44. PubMed ID: 5941994
    [No Abstract]   [Full Text] [Related]  

  • 4. Calcium-mediated conversion of sucrose to starch in relation to the activities of amylases and sucrose-metabolizing enzymes in sorghum grains raised through liquid culture.
    Bhatia S; Singh R
    Indian J Biochem Biophys; 2000 Apr; 37(2):135-9. PubMed ID: 10983425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starch synthesis by Cryptococcus laurentii.
    Foda MS; Phaff HJ
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:H9-10. PubMed ID: 5312029
    [No Abstract]   [Full Text] [Related]  

  • 6. Metabolic activity of starch granules from the tapioca (Manihot utilissima) plant: 3. Starch granules as multienzyme units.
    Viswanathan PN; Krishnan PS
    Indian J Biochem; 1966 Dec; 3(4):228-35. PubMed ID: 4227367
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes in the carbohydrate constituents of cassava root-tuber (Manihot utilissima Pohl) during growth.
    Ketiku AO; Oyenuga VA
    J Sci Food Agric; 1972 Dec; 23(12):1451-6. PubMed ID: 4660327
    [No Abstract]   [Full Text] [Related]  

  • 8. Production of saccharogenic and dextrinogenic amylases by Rhizomucor pusillus A 13.36.
    Silva TM; Attili-Angeli D; Carvalho AF; Da Silva R; Boscolo M; Gomes E
    J Microbiol; 2005 Dec; 43(6):561-8. PubMed ID: 16410774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield.
    Baroja-Fernández E; Muñoz FJ; Montero M; Etxeberria E; Sesma MT; Ovecka M; Bahaji A; Ezquer I; Li J; Prat S; Pozueta-Romero J
    Plant Cell Physiol; 2009 Sep; 50(9):1651-62. PubMed ID: 19608713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymic mechanism of starch synthesis in sweet potato roots. II. Enchancement of the starch synthetase activity by maltooligosaccharides.
    Murata T; Akazawa T
    Arch Biochem Biophys; 1969 Mar; 130(1):604-9. PubMed ID: 5778673
    [No Abstract]   [Full Text] [Related]  

  • 11. Evaluation of nondigested carbohydrates in hydroxypropylated tapioca starch.
    Tachibe M; Kato R; Nishibata T; Tashiro K; Kishida T; Ebihara K
    J Food Sci; 2010; 75(1):H1-4. PubMed ID: 20492172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ENZYMIC MECHANISM OF STARCH SYNTHESIS IN RIPENING RICE GRAINS. II. ADENOSINE DIPHOSPHATE GLUCOSE PATHWAY.
    MURATA T; SUGIYAMA T; AKAZAWA T
    Arch Biochem Biophys; 1964 Jul; 107():92-101. PubMed ID: 14211573
    [No Abstract]   [Full Text] [Related]  

  • 13. METABOLIC ACTIVITY OF STARCH GRANULES FROM THE TAPIOCA PLANT. I. UDPG-STARCH-GLUCOSYL TRANSFERASE.
    VISWANATHAN PN; KRISHNAN PS
    Indian J Biochem; 1965 Mar; 2():16-21. PubMed ID: 14336510
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on UDP-glucose: D-fructose 2-glucosyltransferase from tapioca tuber.
    Shukla RN; Sanwal GG
    Arch Biochem Biophys; 1971 Jan; 142(1):303-9. PubMed ID: 5545484
    [No Abstract]   [Full Text] [Related]  

  • 15. Interconvertible forms of glycogen synthetase in Neurospora crassa.
    Téllez-Iñón MT; Terenzi H; Torres HN
    Biochim Biophys Acta; 1969; 191(3):765-8. PubMed ID: 5363997
    [No Abstract]   [Full Text] [Related]  

  • 16. Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts.
    Ghosh HP; Preiss J
    J Biol Chem; 1966 Oct; 241(19):4491-504. PubMed ID: 5922972
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of sucrose and starch synthesis in wheat (Triticum aestivum L.) leaves: role of fructose 2,6-bisphosphate.
    Trevanion SJ
    Planta; 2002 Aug; 215(4):653-65. PubMed ID: 12172849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MECHANISM OF GLUCOSE TRANSFER FROM SUCROSE INTO THE STARCH GRANULE OF SWEET CORN.
    RONGINEDEFEKETE MA; CARDINI CE
    Arch Biochem Biophys; 1964 Jan; 104():173-84. PubMed ID: 14110713
    [No Abstract]   [Full Text] [Related]  

  • 19. Influences of starch and sucrose on Streptococcus mutans biofilms.
    Duarte S; Klein MI; Aires CP; Cury JA; Bowen WH; Koo H
    Oral Microbiol Immunol; 2008 Jun; 23(3):206-12. PubMed ID: 18402606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allosteric properties of yeast glycogen synthetase.
    Cabib E; Rothman LB
    Natl Cancer Inst Monogr; 1967 Nov; 27():19-28. PubMed ID: 4230710
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.