These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4222257)

  • 1. Regulation of metabolism in working muscle in vivo. II. Concentrations of adenine nucleotides, arginine phosphate, and inorganic phosphate in insect flight muscle during flight.
    Sacktor B; Hurlbut EC
    J Biol Chem; 1966 Feb; 241(3):632-4. PubMed ID: 4222257
    [No Abstract]   [Full Text] [Related]  

  • 2. Flying insects: model systems in exercise physiology.
    Wegener G
    Experientia; 1996 May; 52(5):404-12. PubMed ID: 8641375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates.
    Beis I; Newsholme EA
    Biochem J; 1975 Oct; 152(1):23-32. PubMed ID: 1212224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of glycolysis in skeletal muscle.
    Ramaiah A
    Life Sci; 1976 Aug; 19(4):455-65. PubMed ID: 183077
    [No Abstract]   [Full Text] [Related]  

  • 5. Myocardial adenine nucleotides, hexose phosphates and inorganic phosphate, and the regulation of phosphofructokinase activity during fluoroacetate poisoning in the rat.
    Godoy HM; del Carmen Villarruel M
    Biochem Pharmacol; 1974 Nov; 23(22):3179-89. PubMed ID: 4155303
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulatory mechanisms in carbohydrate metabolism. 8. The regulatory function of phosphate in glycolysis.
    Uyeda K; Racker E
    J Biol Chem; 1965 Dec; 240(12):4689-93. PubMed ID: 4221249
    [No Abstract]   [Full Text] [Related]  

  • 7. Regulation of metabolism in working muscle in vivo. I. Concentrations of some glycolytic, tricarboxylic acid cycle, and amino acid intermediates in insect flight muscle during flight.
    Sacktor B; Wormser-Shavit E
    J Biol Chem; 1966 Feb; 241(3):624-31. PubMed ID: 5908129
    [No Abstract]   [Full Text] [Related]  

  • 8. Glycolytic control mechanisms. V. Kinetics of high energy phosphate intermediate changes during electrical discharge and recovery in the main organ of Electrophorus electricus.
    Williamson JR; Herczeg BE; Coles HS; Cheung WY
    J Biol Chem; 1967 Nov; 242(21):5119-24. PubMed ID: 4293783
    [No Abstract]   [Full Text] [Related]  

  • 9. The role of the fructose 6-phosphate/fructose 1,6-diphosphate cycle in metabolic regulation and heat generation.
    Newsholme EA
    Biochem Soc Trans; 1976; 4(6):978-84. PubMed ID: 191317
    [No Abstract]   [Full Text] [Related]  

  • 10. A comparison of the properties of the phosphofructokinases of the fat body and flight muscle of the adult male desert locust.
    Walker PR; Bailey E
    Biochem J; 1969 Feb; 111(3):365-9. PubMed ID: 4304161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tension transients in glycerol-extracted fibres of insect fibrillar muscle (Lethocerus maximus).
    Schädler M; Steiger G; Rüegg JC
    Experientia; 1969 Sep; 25(9):942-3. PubMed ID: 5371426
    [No Abstract]   [Full Text] [Related]  

  • 12. The effects of ammonium, inorganic phosphate and potassium ions on the activity of phosphofructokinases from muscle and nervous tissues of vertebrates and invertebrates.
    Sugden PH; Newsholme EA
    Biochem J; 1975 Jul; 150(1):113-22. PubMed ID: 128356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. II. Oscillations of glycolytic intermediates and adenine nucleotides.
    Frenkel R
    Arch Biochem Biophys; 1968 Apr; 125(1):157-65. PubMed ID: 4296954
    [No Abstract]   [Full Text] [Related]  

  • 14. Biochemical changes in denervated skeletal muscle. II. Labelling patterns of the main phosphate fractions in normal and denervated rat-gastrocnemius muscle using 32Pi as indicator.
    Graff GL; Hudson AJ; Strickland KP
    Biochim Biophys Acta; 1965 Jul; 104(2):532-42. PubMed ID: 5855059
    [No Abstract]   [Full Text] [Related]  

  • 15. [Influence of different inhibitors of the sarcoplasmic reticulum on potassium contracture and the turnover of energy-rich phosphate compounds in the isolated frog sartorius].
    Janke J; Oberdisse A; Petzoldt C
    Pflugers Arch; 1970; 314(2):124-40. PubMed ID: 5460707
    [No Abstract]   [Full Text] [Related]  

  • 16. A study on the interdependence of contractile tone and metabolite levels in vivo in rat skeletal muscle.
    Kirsten E; Kirsten R; Arese P; Kraus H; Snigula E
    Biochem Z; 1966 Apr; 344(3):233-7. PubMed ID: 5985648
    [No Abstract]   [Full Text] [Related]  

  • 17. Rapid oxidation of palmitate with concomitant phosphorylation of adenosine 5'-diphosphate by moth flight-muscle mitochondria.
    Stevenson E
    Biochim Biophys Acta; 1966 Oct; 128(1):29-33. PubMed ID: 5972366
    [No Abstract]   [Full Text] [Related]  

  • 18. Oxygen debt and high-energy phosphates in gastrocnemius muscle of the dog.
    Piiper J; Di Prampero PE; Cerretelli P
    Am J Physiol; 1968 Sep; 215(3):523-31. PubMed ID: 5670989
    [No Abstract]   [Full Text] [Related]  

  • 19. Brain metabolism in experimental uremia.
    Van den Noort S; Eckel RE; Brine KL; Hrdlicka J
    Arch Intern Med; 1970 Nov; 126(5):831-4. PubMed ID: 4248904
    [No Abstract]   [Full Text] [Related]  

  • 20. Control of glycolysis in human erythrocytes by inorganic phosphate and sulfate.
    Rizzo SC; Eckel RE
    Am J Physiol; 1966 Aug; 211(2):429-36. PubMed ID: 4224148
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.