BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 4222480)

  • 1. Flavin-linked dehydrogenation of ether glycols by cell-free extracts of a soil bacterium.
    Payne WJ; Todd RL
    J Bacteriol; 1966 Apr; 91(4):1533-6. PubMed ID: 4222480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FLAVINE ADENINE DINUCLEOTIDE-LINKED MALIC DEHYDROGENASE FROM ACETOBACTER XYLINUM.
    BENZIMAN M; GALANTER Y
    J Bacteriol; 1964 Oct; 88(4):1010-8. PubMed ID: 14219012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ; SMITH PF
    J Bacteriol; 1964 Jul; 88(1):122-9. PubMed ID: 14197876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial utilization of ether glycols.
    FINCHER EL; PAYNE WJ
    Appl Microbiol; 1962 Nov; 10(6):542-7. PubMed ID: 13945208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced nicotinamide adenine dinucleotide oxidase activity and H2O2 formation of Mycoplasma pneumoniae.
    Low IE; Zimkus SM
    J Bacteriol; 1973 Oct; 116(1):346-54. PubMed ID: 4147646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha-alpha'-dipyridyl or ortho-phenanthroline stimulation of the soluble reduced nicotinamide adenine dinucleotide oxidase from Bacillus subtilis spores and dipicolinic acid inhibition of the stimulated enzymes.
    Tochikubo K
    J Bacteriol; 1974 Mar; 117(3):1017-22. PubMed ID: 4149880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. I. LACTATE OXIDATION BY MYCOPLASMA GALLISEPTICUM.
    SMITH SL; VANDEMARK PJ; FABRICANT J
    J Bacteriol; 1963 Nov; 86(5):893-7. PubMed ID: 14080798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ELECTRON TRANSPORT IN BACILLUS POPILLIAE.
    PEPPER RE; COSTILOW RN
    J Bacteriol; 1965 Feb; 89(2):271-6. PubMed ID: 14255689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [On the antagonism of atabrine and flavine nucleotides in the behavior of movement and reaction to light of Phormidium uncinatum].
    Nultsch W
    Arch Mikrobiol; 1966 Nov; 55(2):187-99. PubMed ID: 5992184
    [No Abstract]   [Full Text] [Related]  

  • 10. Microbial degradation of polyethers.
    Kawai F
    Appl Microbiol Biotechnol; 2002 Jan; 58(1):30-8. PubMed ID: 11831473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction, oxidation, and addition reactions between free radicals and flavins.
    Ahmad R; Armstrong DA
    Biochemistry; 1982 Oct; 21(22):5445-50. PubMed ID: 7171566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction.
    Hodgson AV; Strobel HW
    Anal Biochem; 1996 Dec; 243(1):154-7. PubMed ID: 8954538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factor 420-dependent pyridine nucleotide-linked hydrogenase system of Methanobacterium ruminantium.
    Tzeng SF; Wolfe RS; Bryant MP
    J Bacteriol; 1975 Jan; 121(1):184-91. PubMed ID: 234934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diaphorases from Aerobacter aerogenes.
    Bernofsky C; Mills RC
    J Bacteriol; 1966 Nov; 92(5):1404-14. PubMed ID: 5924271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of pipecolic acid in a Pseudomonas species. V. Pipecolate oxidase and dehydrogenase.
    Baginsky ML; Rodwell VW
    J Bacteriol; 1967 Oct; 94(4):1034-9. PubMed ID: 6051341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the midpoint potential of the FAD and FMN flavin cofactors and of the 3Fe-4S cluster of glutamate synthase.
    Ravasio S; Curti B; Vanoni MA
    Biochemistry; 2001 May; 40(18):5533-41. PubMed ID: 11331018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between flavins and alcohols.
    Yu BS; Lee SJ; Chung HH
    Chem Biol Interact; 1982 Jul; 41(1):61-73. PubMed ID: 6124321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why the Flavin Adenine Dinucleotide (FAD) Cofactor Needs To Be Covalently Linked to Complex II of the Electron-Transport Chain for the Conversion of FADH
    Dourado DFAR; Swart M; Carvalho ATP
    Chemistry; 2018 Apr; 24(20):5246-5252. PubMed ID: 29124817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.