These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 4224523)

  • 1. Comparative studies of the MG activated ATPase activity and Ca uptake of fractions of white and red muscle homogenates.
    Sréter FA; Gergely J
    Biochem Biophys Res Commun; 1964 Jul; 16(5):438-43. PubMed ID: 4224523
    [No Abstract]   [Full Text] [Related]  

  • 2. Potassium-activated adenosinetriphosphatase and calcium uptake by sarcoplasmic reticulum.
    Duggan PF
    Life Sci; 1967 Mar; 6(6):561-7. PubMed ID: 4226765
    [No Abstract]   [Full Text] [Related]  

  • 3. Calcium uptake and relaxing activity in a fractionated rabbit muscle homogenate.
    Baltscheffsky M
    Biochem Biophys Res Commun; 1964; 14():296-301. PubMed ID: 4284345
    [No Abstract]   [Full Text] [Related]  

  • 4. COMPARATIVE STUDIES ON WHITE AND RED MUSCLE FRACTIONS.
    SRETER FA
    Fed Proc; 1964; 23():930-2. PubMed ID: 14209824
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on the Na+- and K+ -activated adenosine triphosphatase in human striated muscle.
    Samaha FJ; Gergely J
    Arch Biochem Biophys; 1966 Jun; 114(3):481-7. PubMed ID: 4224949
    [No Abstract]   [Full Text] [Related]  

  • 6. [Data on the presence in skeletal muscle nuclei of Mg 2+ -dependent, Ca 2+ activated ATPase and its properties].
    Silakova AI; Beliaeva LV
    Dokl Akad Nauk SSSR; 1973 Feb; 208(5):1239-41. PubMed ID: 4266376
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of alkaline cations on ATPase activity and Ca 2+ uptake of skeletal muscle microsomes.
    Costa MJ; Perret M; De Meis L
    An Acad Bras Cienc; 1970 Jun; 42(2):269-74. PubMed ID: 4258109
    [No Abstract]   [Full Text] [Related]  

  • 8. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2 plus translocation coupled with formation of a phosphorylated intermediate.
    Sumida M; Tonomura Y
    J Biochem; 1974 Feb; 75(2):283-97. PubMed ID: 4276200
    [No Abstract]   [Full Text] [Related]  

  • 9. Calcium binding activity of microsomal fraction of rabbit rad muscle.
    Harigaya S; Ogawa Y; Sugita H
    J Biochem; 1968 Mar; 63(3):324-31. PubMed ID: 4233603
    [No Abstract]   [Full Text] [Related]  

  • 10. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport.
    Makinose M
    Eur J Biochem; 1969 Aug; 10(1):74-82. PubMed ID: 4242109
    [No Abstract]   [Full Text] [Related]  

  • 11. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Intermediate formation of phosphoryl protein.
    Yamamoto T; Tonomura Y
    J Biochem; 1968 Aug; 64(2):137-45. PubMed ID: 4236838
    [No Abstract]   [Full Text] [Related]  

  • 12. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

  • 13. [Calcium transport and ATPase activity of mitochondria and sarcoplasmic reticulum fragments of rabbit heart and muscle in hypercholesteremia].
    Chernysheva GV; Stoĭda LV; Kuz'mina IL
    Biull Eksp Biol Med; 1980 Mar; 89(3):292-4. PubMed ID: 6446328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide binding to myosin in calcium activated muscle.
    Marston SB; Tregear RT
    Biochim Biophys Acta; 1974 Mar; 333(3):581-4. PubMed ID: 4277060
    [No Abstract]   [Full Text] [Related]  

  • 15. [Calcium ion-independent contraction and ATPase in glycerinated muscle fibers following alkaline extraction of troponin].
    Meinrenken W
    Pflugers Arch; 1969; 311(3):243-55. PubMed ID: 4242322
    [No Abstract]   [Full Text] [Related]  

  • 16. Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase.
    Arruda AP; Da-Silva WS; Carvalho DP; De Meis L
    Biochem J; 2003 Nov; 375(Pt 3):753-60. PubMed ID: 12887329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle: a new ATPase shown to be uncoupled calcium pump ATPase.
    Duggan PF
    Ir J Med Sci; 1971 Feb; 140(2):71-8. PubMed ID: 4252588
    [No Abstract]   [Full Text] [Related]  

  • 18. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 3. Ca plus-uptake and ATP-splitting.
    Yamada S; Yamamoto T; Tonomura Y
    J Biochem; 1970 Jun; 67(6):789-94. PubMed ID: 4247349
    [No Abstract]   [Full Text] [Related]  

  • 19. Calcium uptake and associated adenosine triphosphatase activity of isolated platelet membranes.
    Robblee LS; Shepro D; Belamarich FA
    J Gen Physiol; 1973 Apr; 61(4):462-81. PubMed ID: 4266586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Differential ATPase inhibition by azide in white and red muscle fibers of the rat].
    Ermini M
    Experientia; 1970; 26(2):173-4. PubMed ID: 4244205
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.