These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 42250)
1. Mechanistic studies with purified components of the liver microsomal hydroxylation system: spectral intermediates in reaction of cytochrome P-450 with peroxy compounds. Coon MJ; Blake RC; Oprian DD; Ballou DP Acta Biol Med Ger; 1979; 38(2-3):449-58. PubMed ID: 42250 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of reduction of purified liver microsomal cytochrome P-450 in the reconstituted enzyme system studied by stopped flow spectrophotometry. Vatsis KP; Oprian DD; Coon MJ Acta Biol Med Ger; 1979; 38(2-3):459-73. PubMed ID: 42251 [TBL] [Abstract][Full Text] [Related]
3. On the mechanism of action of cytochrome P-450. Spectral intermediates in the reaction of P-450LM2 with peroxy compounds. Blake RC; Coon MJ J Biol Chem; 1980 May; 255(9):4100-11. PubMed ID: 7372668 [TBL] [Abstract][Full Text] [Related]
4. Electronic and steric factors in regioselective hydroxylation catalyzed by purified cytochrome P-450. White RE; Groves JT; McClusky GA Acta Biol Med Ger; 1979; 38(2-3):475-82. PubMed ID: 117660 [TBL] [Abstract][Full Text] [Related]
5. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase. Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607 [TBL] [Abstract][Full Text] [Related]
6. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
7. Catalytic properties of the liver microsomal hydroxylase system in reconstituted phospholipid vesicles. Ingelman-Sundberg M; Johansson I; Hansson A Acta Biol Med Ger; 1979; 38(2-3):379-88. PubMed ID: 117658 [TBL] [Abstract][Full Text] [Related]
8. The mechanism of hydroperoxide-dependent reactions with participation of cytochrome P-450. Metelitza DI; Akhrem AA; Erjomin AN; Kissel MA; Usanov SA Acta Biol Med Ger; 1979; 38(2-3):511-8. PubMed ID: 517012 [TBL] [Abstract][Full Text] [Related]
9. Reconstituted liver microsomal enzyme system that hydroxylates drugs, other foreign compounds, and endogenous substrates. IX. The formation of a 455-nm metabolite-cytochrome P-450 complex. Kawalek JC; Levin W; Ryan D; Lu AY Drug Metab Dispos; 1976; 4(2):190-4. PubMed ID: 5265 [TBL] [Abstract][Full Text] [Related]
10. [Multiphasic character of the kinetics of cytochrome P-450 destruction in microsomal LM2- and LM4-forms in the reaction with cumene hydroperoxide]. Akhrem AA; Eremin AN; Usanov SA; Metelitsa DI Biofizika; 1980; 25(1):75-81. PubMed ID: 7370331 [TBL] [Abstract][Full Text] [Related]
11. Studies on covalent binding of (-)trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene metabolites to cytochromes P-450 LM2 and LM4 and NADPH-cytochrome P-450 reductase. Deutsch J; Vatsis KP; Leutz JC; Coon MJ; Gelboin HV Xenobiotica; 1989 Dec; 19(12):1421-35. PubMed ID: 2515665 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of elementary steps in the cytochrome P-450 reaction sequence. VI. Model treatment of the NADPH-dependent first electron transfer reaction between cytochrome P-450 reductase and cytochrome P-450 LM2 in solution. Rohde K; Blanck J; Ruckpaul K Biomed Biochim Acta; 1983; 42(6):651-62. PubMed ID: 6416251 [TBL] [Abstract][Full Text] [Related]
13. [A shunted system of electron transport from NAD(P)H to cholesterol-hydroxylating cytochrome P-450 in adrenal cortex mitochondria]. Usanov SA; Chernogolov AA; Chashchin VL; Akhrem AA Biokhimiia; 1985 Oct; 50(10):1702-11. PubMed ID: 4074778 [TBL] [Abstract][Full Text] [Related]
14. [Interaction of acrylonitrile with the microsomal oxidation system of the rat liver]. Ivanov VV; Zhirnov GF; Bachmanova GI; Mazurov AV; Archakov AI Vopr Med Khim; 1979; 25(4):468-71. PubMed ID: 473691 [TBL] [Abstract][Full Text] [Related]
15. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the metabolism of parathion by a rat liver reconstituted mixed-function oxidase enzyme system and by a system containing cumene hydroperoxide and purified rat liver cytochrome P-450. Yoshihara S; Neal RA Drug Metab Dispos; 1977; 5(2):191-7. PubMed ID: 15813 [TBL] [Abstract][Full Text] [Related]
18. Bufuralol hydroxylation by cytochrome P450 2D6 and 1A2 enzymes in human liver microsomes. Yamazaki H; Guo Z; Persmark M; Mimura M; Inoue K; Guengerich FP; Shimada T Mol Pharmacol; 1994 Sep; 46(3):568-77. PubMed ID: 7935340 [TBL] [Abstract][Full Text] [Related]
19. Interaction of constitutive and phenobarbital-induced cytochrome P-450 isozymes during the sequential oxidation of benzphetamine. Explanation for the difference in benzphetamine-induced hydrogen peroxide production and 455-nm complex formation in microsomes from untreated and phenobarbital-treated rats. Jeffery EH; Mannering GJ Mol Pharmacol; 1983 May; 23(3):748-57. PubMed ID: 6865917 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical investigations on the oxygen activation by cytochrome P-450. Scheller F; Renneberg R; Schwarze W; Strnad G; Pommerening K; Prümke HJ; Mohr P Acta Biol Med Ger; 1979; 38(2-3):503-9. PubMed ID: 42252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]