These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 4225274)

  • 1. Some problems concerning the development of high-frequency impedance of brain tissue in chick embryos.
    Sedlácek J
    Physiol Bohemoslov; 1966; 15(6):552-9. PubMed ID: 4225274
    [No Abstract]   [Full Text] [Related]  

  • 2. Development of spinal cord bioelectric activity in spinal chick embryos and its behavioral implications.
    Provine RR; Rogers L
    J Neurobiol; 1977 May; 8(3):217-28. PubMed ID: 874478
    [No Abstract]   [Full Text] [Related]  

  • 3. The development of brain impedance in chick embryos.
    Sedlácek J; Macek O
    Physiol Bohemoslov; 1966; 15(2):104-10. PubMed ID: 4283657
    [No Abstract]   [Full Text] [Related]  

  • 4. [Role of various regions of the spinal cord in generating spontaneous motor activity in the chick embryo].
    Baev KV; Chub NL
    Neirofiziologiia; 1989; 21(1):124-6. PubMed ID: 2725778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brachially innervated ectopic hindlimbs in the chick embryo. II. The role of supraspinal input in the loss of limb motility.
    Kitchener PD; Laing NG
    J Neurobiol; 1993 Mar; 24(3):335-43. PubMed ID: 8492110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the effect of K+, G-strophantin and metabolic inhibitors upon the steady potential and impedance of the brain tissue in chick embryos.
    Sedlácek J
    Physiol Bohemoslov; 1967; 16(4):350-7. PubMed ID: 4228113
    [No Abstract]   [Full Text] [Related]  

  • 7. Neuronotrophic effects of skeletal muscle fractions on spinal cord differentiation.
    Hsu L; Natyzak D; Trupin GL
    J Embryol Exp Morphol; 1982 Oct; 71():83-95. PubMed ID: 7153699
    [No Abstract]   [Full Text] [Related]  

  • 8. [Behavior characteristics of nerve and muscle cells in mixed cultures of chick embryo skeletal muscle and spinal cord].
    Museridze DP; Svanidze IK
    Tsitologiia; 1982 May; 24(5):610-2. PubMed ID: 7101460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical activity in the spinal cord of the chick embryo, in situ.
    Provine RR; Sharma SC; Sandel TT; Hamburger V
    Proc Natl Acad Sci U S A; 1970 Mar; 65(3):508-15. PubMed ID: 5267135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Penicillin activates spontaneous motility in chick embryos.
    Sedlácek J
    Physiol Bohemoslov; 1982; 31(3):203-12. PubMed ID: 6214804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Excitability of muscle and brain and their sorption of dyes during hyperpolarization].
    Andriaĭnen OA; Gol'dfel'd IL; Predtechenskaia NV; Sorokhtin GN
    Tsitologiia; 1969; 11(3):354-9. PubMed ID: 5404192
    [No Abstract]   [Full Text] [Related]  

  • 12. The nature of the earliest spontaneous activity of the chick embryo.
    Alconero BB
    J Embryol Exp Morphol; 1965 Jun; 13(3):255-66. PubMed ID: 5847448
    [No Abstract]   [Full Text] [Related]  

  • 13. Brain-derived proteins that rescue spinal motoneurons from cell death in the chick embryo: comparisons with target-derived and recombinant factors.
    Johnson JE; Wei YQ; Prevette D; Oppenheim RW
    J Neurobiol; 1995 Aug; 27(4):573-89. PubMed ID: 7561835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Changes in the reflex activity of the spinal cord upon peripheral thermal stimulation].
    Tleulin SZ; Kleinbok IIa; Tsitsurin VI
    Neirofiziologiia; 1973; 5(2):181-5. PubMed ID: 4715808
    [No Abstract]   [Full Text] [Related]  

  • 15. Interactions between spinal cord stimulation and activity blockade in the regulation of synaptogenesis and motoneuron survival in the chick embryo.
    Fournier Le Ray C; Prevette D; Oppenheim RW; Fontaine-Perus J
    J Neurobiol; 1993 Sep; 24(9):1142-56. PubMed ID: 8409975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of a return of motor neurons to spontaneous activity on the multi-innervation of muscular fibers induced in chick embryo by chronic slow-rhythm spinal cord stimulation].
    Renaud D; Le Douarin G
    C R Seances Acad Sci III; 1981 Dec; 293(14):751-3. PubMed ID: 6802449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical analysis of depolarization waves in the embryonic brain: a dual network of gap junctions and chemical synapses.
    Momose-Sato Y; Miyakawa N; Mochida H; Sasaki S; Sato K
    J Neurophysiol; 2003 Jan; 89(1):600-14. PubMed ID: 12522205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of the earliest correlated neuronal activity in the chick embryo revealed by optical imaging with voltage-sensitive dyes.
    Momose-Sato Y; Mochida H; Kinoshita M
    Eur J Neurosci; 2009 Jan; 29(1):1-13. PubMed ID: 19077122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord.
    Berki AC; O'Donovan MJ; Antal M
    J Comp Neurol; 1995 Nov; 362(4):583-96. PubMed ID: 8636469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of spontaneous motility in chick embryos. Significance of basic brain regions.
    Sedlácek J
    Physiol Bohemoslov; 1979; 28(3):193-9. PubMed ID: 157487
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.