These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 422560)

  • 21. [Affinity modification of rabbit skeletal muscle creatine kinase by a fluorescent analog of ATP: gamma-(azidoanalide)-1, N6-ethenoadenosine triphosphate].
    Denisov AIu; Nevinskiĭ GA; Lavrik OI
    Biokhimiia; 1982 Feb; 47(2):184-90. PubMed ID: 7066423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Interaction of rabbit muscle creatine kinase with a reactive ATP derivative-ATP gamma-4(N-2-chloroethyl-N-methyl-amino)-benzylamidate].
    Mkrtchian ZS; Nersesova LS; Akopian ZhI; Babkina GT; Buneva VN
    Biokhimiia; 1980 May; 45(5):806-11. PubMed ID: 7378502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoaffinity labelling of arginine kinase and creatine kinase with a gamma-P-substituted arylazido analogue of ATP.
    Vandest P; Labbe JP; Kassab R
    Eur J Biochem; 1980 Mar; 104(2):433-42. PubMed ID: 6244950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A membrane-bound creatine phosphokinase in fragmented sarcoplasmic reticulum.
    Baskin RJ; Deamer DW
    J Biol Chem; 1970 Mar; 245(6):1345-7. PubMed ID: 5442823
    [No Abstract]   [Full Text] [Related]  

  • 25. The effect of limited proteolysis on rabbit muscle creatine kinase.
    Price NC; Murray S; Milner-White EJ
    Biochem J; 1981 Oct; 199(1):239-44. PubMed ID: 7039617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of transition-state analogue complexes on trypsin susceptibility of creatine kinase.
    Milner-White EJ; Young D
    Biochem Soc Trans; 1975; 3(4):554-6. PubMed ID: 1237428
    [No Abstract]   [Full Text] [Related]  

  • 27. Nuclear magnetic resonance studies of the role of histidine residues at the active site of rabbit muscle creatine kinase.
    Rosevear PR; Desmeules P; Kenyon GL; Mildvan AS
    Biochemistry; 1981 Oct; 20(21):6155-64. PubMed ID: 7306503
    [No Abstract]   [Full Text] [Related]  

  • 28. [Creatine kinase from rabbit skeletal muscles: formation of O-acyltyrosine as a result of the activation of the carboxylic group of the enzyme active site by affinity reagents, nucleotide imidazolides].
    Nevinskiĭ GA; Lavrik OI; Gazariants MG; Mkrtchian ZS; Akopian ZhI
    Bioorg Khim; 1987 Apr; 13(4):506-18. PubMed ID: 3606672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification of sarcoplasmic reticulum adenosine triphosphatase by adenosine triphosphate magnesium.
    Horgan DJ
    Arch Biochem Biophys; 1974 May; 162(1):6-11. PubMed ID: 4275445
    [No Abstract]   [Full Text] [Related]  

  • 30. [Exposure of cooperativity of the active sites of rabbit skeletal muscle creatine kinase during its interaction with gamma-amides of ATP].
    Gorshkova II; Lavrik OI; Popov RA
    Biokhimiia; 1981 Sep; 46(9):1564-9. PubMed ID: 7295820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Mg2+ on the thermal inactivation and unfolding of creatine kinase.
    Cao ZF; Luo W; Zhou HM
    Int J Biochem Cell Biol; 1999 Nov; 31(11):1307-13. PubMed ID: 10605823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorylation of the membranous protein of the sarcoplasmic reticulum. Inhibition by Na + and K + .
    De Meis L
    Biochemistry; 1972 Jun; 11(13):2460-5. PubMed ID: 4261141
    [No Abstract]   [Full Text] [Related]  

  • 33. The interaction of Mg2+ and ATP4- with ATP: creatine phosphotransferase.
    Heyde E; Morrison JF
    Biochim Biophys Acta; 1969 Mar; 178(1):47-60. PubMed ID: 5773458
    [No Abstract]   [Full Text] [Related]  

  • 34. Studies on adenosine triphosphate transphosphorylases. IX. Kinetic properties of the crystalline adenosine triphosphate-creatine transphosphorylase from calf brain.
    Jacobs HK; Kuby SA
    J Biol Chem; 1970 Jul; 245(13):3305-14. PubMed ID: 5459635
    [No Abstract]   [Full Text] [Related]  

  • 35. Creatine kinase: structure-activity relationships.
    Kenyon GL; Reed GH
    Adv Enzymol Relat Areas Mol Biol; 1983; 54():367-426. PubMed ID: 6342340
    [No Abstract]   [Full Text] [Related]  

  • 36. Localization and function of M-line-bound creatine kinase. M-band model and creatine phosphate shuttle.
    Wallimann T; Eppenberger HM
    Cell Muscle Motil; 1985; 6():239-85. PubMed ID: 3888375
    [No Abstract]   [Full Text] [Related]  

  • 37. Kinetics of irreversible inhibition of creatine kinase during modification by o-phthaldehyde.
    Wang ZF; Xu YK; Zhou HM
    Enzyme Protein; 1994-1995; 48(1):1-9. PubMed ID: 7787965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and differential properties of creatine analogues as inhibitors for human creatine kinase isoenzymes.
    Min KL; Steghens JP; Henry R; Doutheau A; Collombel C
    Eur J Biochem; 1996 Jun; 238(2):446-52. PubMed ID: 8681957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Properties and reaction with iodoacetamide of adenosine 5'-triphosphate-creatine phosphotransferase from human skeletal muscle. Further evidence about the role of the essential thiol group in relation to the mechanism of action.
    Kumudavalli I; Moreland BH; Watts DC
    Biochem J; 1970 Apr; 117(3):513-23. PubMed ID: 4986834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of inhibitors with muscle phosphofructokinase.
    Colombo G; Tate PW; Girotti AW; Kemp RG
    J Biol Chem; 1975 Dec; 250(24):9404-12. PubMed ID: 127795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.