These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 4226111)
1. Potassium transport in human blood platelets. Cooley MH; Cohen P J Lab Clin Med; 1967 Jul; 70(1):69-79. PubMed ID: 4226111 [No Abstract] [Full Text] [Related]
2. Electrolyte concentrations, potassium flux kinetics, and the metabolic dependence of potassium transport in human platelets. Gorstein F; Carroll HJ; Puszkin E J Lab Clin Med; 1967 Dec; 70(6):938-50. PubMed ID: 6059405 [No Abstract] [Full Text] [Related]
3. Influence of metabolic inhibitors on ATP level and ATP-ase activity in blood platelets. Vopatová M; Mircevová L Acta Univ Carol Med Monogr; 1972; 53():119-25. PubMed ID: 4275437 [No Abstract] [Full Text] [Related]
4. An analysis of the uptake of 5-hydroxytryptamine by the myenteric plexus of the small intestine of the guinea pig. Gershon MD; Altman RF J Pharmacol Exp Ther; 1971 Oct; 179(1):29-41. PubMed ID: 4398539 [No Abstract] [Full Text] [Related]
5. On the relations between serotonin uptake and function of the transport-ATPase system of blood platelets. Barthel W; Haustein KO; Markwardt F Acta Biol Med Ger; 1973; 31(5):713-8. PubMed ID: 4275290 [No Abstract] [Full Text] [Related]
6. Effects of sodium-deficient medium and ouabain on potassium exchange in taenia coli. Pfaffman MA; Holland WC J Pharmacol Exp Ther; 1969 Sep; 169(1):56-60. PubMed ID: 4240958 [No Abstract] [Full Text] [Related]
7. [Energy sources for the active transport of ions in neurons of the snail Helix pomatia]. Sorokina ZA Zh Evol Biokhim Fiziol; 1972; 8(4):381-7. PubMed ID: 4668870 [No Abstract] [Full Text] [Related]
8. The relation between ouabain-sensitive potassium efflux and the hypothetical dephosphorylation step in the "transport ATPase" system. Glynn IM; Lüthi U J Gen Physiol; 1968 May; 51(5):Suppl:385S+. PubMed ID: 4232206 [No Abstract] [Full Text] [Related]
9. Effects of inhibitors of metabolism on adenine nucleotides and on 22 Na and 42 K and net movements in rat uteri at 25 degrees C. Daniel EE; Robinson K Can J Physiol Pharmacol; 1971 Mar; 49(3):205-39. PubMed ID: 4256570 [No Abstract] [Full Text] [Related]
10. Cation transport and energy metabolism in the high Na+, low K+ erythrocyte of the harbor seal, Phoca vitulina. Robin ED; Murdaugh HV; Cross CE; Smith J; Theodore J Comp Biochem Physiol A Comp Physiol; 1971 Aug; 39(4):807-21. PubMed ID: 4398992 [No Abstract] [Full Text] [Related]
11. Accumulation of debrisoquin-14C by the human platelet. Pocelinko R; Solomon HM Biochem Pharmacol; 1970 Mar; 19(3):697-703. PubMed ID: 5507678 [No Abstract] [Full Text] [Related]
12. Clot retraction and energy metabolism of platelets. Effect and mechanism of inhibitors. Mürer EH Biochim Biophys Acta; 1969 Feb; 172(2):266-76. PubMed ID: 5775696 [No Abstract] [Full Text] [Related]
13. Increased ouabain-sensitive glycolysis of lymphocytes treated with phytohemagglutinin: relationship to potassium transport. Segel GB; Androphy EJ; Lichtman MA J Cell Physiol; 1978 Dec; 97(3 Pt 2 Suppl 1):407-12. PubMed ID: 730777 [No Abstract] [Full Text] [Related]
14. Effect of metabolic inhibitors and of strophanthin on sodium transport and metabolism of the isolated turtle bladder. Klahr S; Kantrow C; Bricker NS Comp Biochem Physiol; 1970 Apr; 33(4):773-82. PubMed ID: 4246352 [No Abstract] [Full Text] [Related]
15. [Molecular mechanism of active transport of cations]. Saito M Tanpakushitsu Kakusan Koso; 1971 Aug; 16(9):723-34. PubMed ID: 4255029 [No Abstract] [Full Text] [Related]
17. [Glycolysis of human erythrocytes and permeability to orthophosphate ions]. Cartier P; Chedru J Bull Soc Chim Biol (Paris); 1966; 48(12):1421-37. PubMed ID: 5982799 [No Abstract] [Full Text] [Related]
18. Potassium efflux associated with partial reversal of the sodium pump in human red cell ghosts. Simons TJ J Physiol; 1972 Dec; 227(2):19P-20P. PubMed ID: 4647235 [No Abstract] [Full Text] [Related]
19. Studies on the mechanism maintaining biconcave shape of human erythrocytes. Szász I; Arky I; Gárdos G Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):501-8. PubMed ID: 4176851 [No Abstract] [Full Text] [Related]
20. Transport capacity of median eminence. II. Thyroxine transport. Silverman AJ; Knigge KM Neuroendocrinology; 1972; 10(2):71-82. PubMed ID: 4261716 [No Abstract] [Full Text] [Related] [Next] [New Search]