These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4228071)

  • 61. A cation activated adenosinetriphosphatase in cell membranes of halophilic Vibrio parahaemolyticus.
    Yayashi M; Uchida R
    Biochim Biophys Acta; 1965 Oct; 110(1):207-9. PubMed ID: 4222229
    [No Abstract]   [Full Text] [Related]  

  • 62. The calcium sensitivity of ATPase activity of myofibrils and actomyosins from insect flight and leg muscles.
    Maruyama K; Pringle JW; Tregear RT
    Proc R Soc Lond B Biol Sci; 1968 Feb; 169(1016):229-40. PubMed ID: 4384564
    [No Abstract]   [Full Text] [Related]  

  • 63. Some characteristics of ATPase activity in a brain microtubule protein preparation.
    Larsson H; Wallin M; Edström A
    J Neurochem; 1979 Dec; 33(6):1249-58. PubMed ID: 162206
    [No Abstract]   [Full Text] [Related]  

  • 64. The relaxing protein system of striated muscle. Resolution of the troponin complex into inhibitory and calcium ion-sensitizing factors and their relationship to tropomyosin.
    Schaub MC; Perry SV
    Biochem J; 1969 Dec; 115(5):993-1004. PubMed ID: 4243353
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reactivity of actomyosin and myosin with 1-fluoro-2,4-dinitrobenzene in vivo and in vitro.
    Bárány M; Bárány K; Bailin G
    Biochim Biophys Acta; 1968 Oct; 168(2):298-310. PubMed ID: 4235145
    [No Abstract]   [Full Text] [Related]  

  • 66. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal mus le. V. Vectorial requirements for calcium and magnesium ions of three partial reactions of ATPase: formation and decomposition of a phosphorylated intermediate and ATP-formation from ADP and the intermediate.
    Kanazawa T; Yamada A; Yamamoto T; Tonomura Y
    J Biochem; 1971 Jul; 70(1):95-123. PubMed ID: 4254539
    [No Abstract]   [Full Text] [Related]  

  • 67. Ca2+-Dependent activities of (Na+ + K+)-ATPase.
    Huang WH; Askari A
    Arch Biochem Biophys; 1982 Jul; 216(2):741-50. PubMed ID: 6126159
    [No Abstract]   [Full Text] [Related]  

  • 68. Relaxation of glycerinated muscle fibers and clearing response of myosin B in magnesium-inosine triphosphate medium.
    Ghani QP; Watanabe S
    J Biochem; 1971 Apr; 69(4):739-52. PubMed ID: 4995444
    [No Abstract]   [Full Text] [Related]  

  • 69. I-protein, a new regulatory protein from vertebrate skeletal muscle. III. Function.
    Maruyama K; Kunitomo S; Kimura S; Ohashi K
    J Biochem; 1977 Jan; 81(1):243-7. PubMed ID: 14932
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Superprecipitation and adenosine triphosphatase activity of myosin B in Duchenne muscular dystrophy.
    Furukawa T; Peter JB
    Neurology; 1971 Sep; 21(9):920-4. PubMed ID: 4255122
    [No Abstract]   [Full Text] [Related]  

  • 71. Differential effects of metal chelators on Na plus, K plus-ATPase activity.
    Wallick ET; Allen JC; Schwartz A
    Arch Biochem Biophys; 1973 Sep; 158(1):149-53. PubMed ID: 4269668
    [No Abstract]   [Full Text] [Related]  

  • 72. Magnesium activation of natural actomyosin ATPase from horseshoe crab.
    De Villafranca GW; Campbell LK
    Comp Biochem Physiol; 1969 May; 29(2):775-83. PubMed ID: 4239702
    [No Abstract]   [Full Text] [Related]  

  • 73. Further studies on the myofibrillar adenosine triphosphatase-inhibitory activity and the Mg++-dependent adenosine triphosphatase of the relaxing granules.
    Nagai Y
    J Biochem; 1965 Nov; 58(5):429-35. PubMed ID: 4222325
    [No Abstract]   [Full Text] [Related]  

  • 74. Effect of the troponin C-like protein from bovine brain (brain modulator protein) on the Mg2+-stimulated ATPase of skeletal muscle actinomyosin.
    Amphlett GW; Vanaman TC; Perry SV
    FEBS Lett; 1976 Dec; 72(1):163-8. PubMed ID: 137127
    [No Abstract]   [Full Text] [Related]  

  • 75. Effects of ionic strength, substrate and pH on inactivation of heavy meromyosin caused by low concentrations of urea.
    Takashina H; Kumagai M
    J Biochem; 1967 Jun; 61(6):768-77. PubMed ID: 4228839
    [No Abstract]   [Full Text] [Related]  

  • 76. [Activity of ATPase systems in various fractions of rat cerebral cortex microsomes].
    Glebov RN; Grishankova EV; Mezentsev AN; Komagorov AM
    Biokhimiia; 1972; 37(2):360-5. PubMed ID: 4260176
    [No Abstract]   [Full Text] [Related]  

  • 77. Sarcoplasmic reticulum adenosine triphosphatase: labeling of an essential lysyl residue with pyridoxal-5'-phosphate.
    Murphy AJ
    Arch Biochem Biophys; 1977 Apr; 180(1):114-20. PubMed ID: 140625
    [No Abstract]   [Full Text] [Related]  

  • 78. [Interaction of potassium and magnesium ions in the ATPase activity of heavy meromyosin].
    Petushkova EV; Risnik VM
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1981; (1):18-21. PubMed ID: 6454447
    [No Abstract]   [Full Text] [Related]  

  • 79. Relation between the inhibitory action of native tropomyosin and the dual effect of magnesium on the ATPase activity of actomyosin.
    Nagai T; Takauji M; Jou M; Yamamoto T
    Arch Biochem Biophys; 1970 Apr; 137(2):340-4. PubMed ID: 4245321
    [No Abstract]   [Full Text] [Related]  

  • 80. Studies on calcium-stimulated adenosine triphosphatase in the albino rabbit dental pulp. Its subcellular distribution and properties.
    Abiko Y
    J Dent Res; 1977 Dec; 56(12):1558-68. PubMed ID: 150433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.