These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 42281)

  • 41. Effects of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazol (exo-THPO) and its N-substituted analogs on GABA transport in cultured neurons and astrocytes and by the four cloned mouse GABA transporters.
    Sarup A; Larsson OM; Bolvig T; Frølund B; Krogsgaard-Larsen P; Schousboe A
    Neurochem Int; 2003; 43(4-5):445-51. PubMed ID: 12742090
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Astrocytes are GABAergic cells that modulate microglial activity.
    Lee M; Schwab C; McGeer PL
    Glia; 2011 Jan; 59(1):152-65. PubMed ID: 21046567
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetic characterization of GABA-transaminase from cultured neurons and astrocytes.
    Larsson OM; Schousboe A
    Neurochem Res; 1990 Nov; 15(11):1073-7. PubMed ID: 2089267
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ammonia stimulates the release of taurine from cultured astrocytes.
    Albrecht J; Bender AS; Norenberg MD
    Brain Res; 1994 Oct; 660(2):288-92. PubMed ID: 7820697
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GABA release triggered by the activation of neuron-like non-NMDA receptors in cultured type 2 astrocytes is carrier-mediated.
    Gallo V; Patrizio M; Levi G
    Glia; 1991; 4(3):245-55. PubMed ID: 1680100
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Subpopulations of rat cerebellar astrocytes in primary culture: morphology, cell surface antigens and [3H]GABA transport.
    Johnstone SR; Levi G; Wilkin GP; Schneider A; Ciotti MT
    Brain Res; 1986 Jan; 389(1-2):63-75. PubMed ID: 2418929
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Primary cultures from defined brain areas. III. Effects of seeding time on [3H]L-glutamate transport and glutamine synthetase activity.
    Hansson E
    Brain Res; 1986 Jan; 389(1-2):203-9. PubMed ID: 2868786
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amino acid and monoamine transport in primary astroglial cultures from defined brain regions.
    Hansson E; Eriksson P; Nilsson M
    Neurochem Res; 1985 Oct; 10(10):1335-41. PubMed ID: 4069308
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biochemical correlates of GABA function in rat cortical neurons in culture.
    Snodgrass SR; White WF; Biales B; Dichter M
    Brain Res; 1980 May; 190(1):123-38. PubMed ID: 7378734
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of ammonia on GABA uptake and release in cultured astrocytes.
    Bender AS; Norenberg MD
    Neurochem Int; 2000 Apr; 36(4-5):389-95. PubMed ID: 10733006
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [The effect of ethanol on gamma-aminobutyric acid in the brain].
    Lassánová M; Turský T; Homerová D
    Bratisl Lek Listy; 1989 Dec; 90(12):875-84. PubMed ID: 2576392
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heterocyclic GABA analogues as selective inhibitors of astroglial GABA uptake.
    Schousboe A; Larsson OM; Hertz L; Krogsgaard-Larsen P
    Adv Biochem Psychopharmacol; 1981; 29():135-41. PubMed ID: 7020364
    [No Abstract]   [Full Text] [Related]  

  • 53. P2Y1 receptor inhibits GABA transport through a calcium signalling-dependent mechanism in rat cortical astrocytes.
    Jacob PF; Vaz SH; Ribeiro JA; Sebastião AM
    Glia; 2014 Aug; 62(8):1211-26. PubMed ID: 24733747
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of separated cell types from developing rat cerebellum. Transport of [3H]GABA by preparations enriched in Purkinje cells and astrocytes.
    Cohen J; Balázs R; Woodhams PL
    Neurochem Res; 1980 Sep; 5(9):963-81. PubMed ID: 7207698
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GABA alters the metabolic fate of [U-13C]glutamate in cultured cortical astrocytes.
    McKenna MC; Sonnewald U
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):81-7. PubMed ID: 15593283
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydroxy-1,2,5-oxadiazolyl moiety as bioisoster of the carboxy function. Synthesis, ionization constants, and pharmacological characterization of gamma-aminobutyric acid (GABA) related compounds.
    Lolli ML; Hansen SL; Rolando B; Nielsen B; Wellendorph P; Madsen K; Larsen OM; Kristiansen U; Fruttero R; Gasco A; Johansen TN
    J Med Chem; 2006 Jul; 49(14):4442-6. PubMed ID: 16821803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Decrease in GABA synthesis rate in rat cortex following GABA-transaminase inhibition correlates with the decrease in GAD(67) protein.
    Mason GF; Martin DL; Martin SB; Manor D; Sibson NR; Patel A; Rothman DL; Behar KL
    Brain Res; 2001 Sep; 914(1-2):81-91. PubMed ID: 11578600
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Effects of pharmacological substances structurally close to gamma-aminobutyric acid on the synthesis, metabolism and membrane transport systems in the cerebral cortex of rats in vitro].
    Kovalev GI; Prikhozhan AV; Eremenko AV
    Farmakol Toksikol; 1986; 49(4):19-22. PubMed ID: 3758322
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-affinity uptake of gamma-aminobutyric acid in cultured glial and neuronal cells.
    Balcar VJ; Mark J; Borg J; Mandel P
    Neurochem Res; 1979 Jun; 4(3):339-54. PubMed ID: 223077
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enzymes of GABA metabolism in tissue culture.
    Ossola L; Maitre M; Blindermann JM; Mandel P
    Adv Exp Med Biol; 1979; 123():139-57. PubMed ID: 517265
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.