These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4228840)

  • 1. Change in ultraviolet absorption spectrum of H-meromyosin induced by its binding with substrate and competitive inhibitor.
    Sekiya K; Tonomura Y
    J Biochem; 1967 Jun; 61(6):787-95. PubMed ID: 4228840
    [No Abstract]   [Full Text] [Related]  

  • 2. Interaction of heavy meromyosin with substrate. 3. Difference spectrum of ultraviolet absorption in subfragment I induced by ATP or ADP.
    Morita F; Shimizu T
    Biochim Biophys Acta; 1969 Aug; 180(3):545-9. PubMed ID: 4241503
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of the acto-H-meromyosin-ATP system by calcium ion and treatment of H-meromyosin with p-chloromercuribenzoate.
    Sekiya K; Tonomura Y
    J Biochem; 1971 May; 69(5):935-50. PubMed ID: 4252709
    [No Abstract]   [Full Text] [Related]  

  • 4. A second type of the inhibitory effect of magnesium on superprecipitation and on ATPase of myosin B, and its reversal by p-chloromercuribenzoate and by adenosine diphosphate.
    Watanabe S
    J Biochem; 1971 Feb; 69(2):387-400. PubMed ID: 4251617
    [No Abstract]   [Full Text] [Related]  

  • 5. Relaxation of glycerinated muscle fibers and clearing response of myosin B in magnesium-inosine triphosphate medium.
    Ghani QP; Watanabe S
    J Biochem; 1971 Apr; 69(4):739-52. PubMed ID: 4995444
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of diazonium derivatives on myosin A adenosine triphosphatase. II. A possible conformational change induced by ATP.
    Yamashita T; Kobayashi S; Sekine T
    J Biochem; 1969 Jun; 65(6):869-77. PubMed ID: 4309458
    [No Abstract]   [Full Text] [Related]  

  • 7. The pre-steady state of the myosin-adenosine triphosphate system. X. The reaction mechanism of the myosin-ATP system and a molecular mechanism of muscle contraction.
    Tonomura Y; Nakamura H; Kinoshita N; Onishi H; Shigekawa M
    J Biochem; 1969 Nov; 66(5):599-618. PubMed ID: 4243202
    [No Abstract]   [Full Text] [Related]  

  • 8. Desensitization of substrate inhibition of acto-H-meromyosin ATPase by treatment of H-meromyosin with rho-chloromercuribenzoate. Relation between the extent of desensitization and the amount of bound rho-chloromercuribenzoate1.
    Shibata-sekiya K; Tonomura Y
    J Biochem; 1975 Mar; 77(3):543-57. PubMed ID: 125273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of heavy meromyosin with substrate. II. Rate of the formation of ATP-induced ultraviolet difference spectrum of heavy meromyosin measured by stopped-flow method.
    Morita F
    Biochim Biophys Acta; 1969 Feb; 172(2):319-27. PubMed ID: 4238057
    [No Abstract]   [Full Text] [Related]  

  • 10. Interaction of heavy meromyosin with substrate. I. Difference in ultraviolet absorption spectrum between heavy meromyosin and its Michaelis-Menten complex.
    Morita F
    J Biol Chem; 1967 Oct; 242(19):4501-6. PubMed ID: 4229047
    [No Abstract]   [Full Text] [Related]  

  • 11. The difference absorption spectrum of myosin induced by adenosine triphosphate, adenosine diphosphate, and inorganic pyrophosphate.
    Yoshino H; Morita F; Yagi K
    J Biochem; 1972 Feb; 71(2):351-3. PubMed ID: 4335788
    [No Abstract]   [Full Text] [Related]  

  • 12. Sulfhydryl groups involved in the active site of myosin A adenosine triphosphatase. I. Specific blocking of the SH group responsible for the inhibitory phase in "B phasic response" of the catalytic activity.
    Yamaguchi M; Sekine T
    J Biochem; 1966 Jan; 59(1):24-33. PubMed ID: 4223102
    [No Abstract]   [Full Text] [Related]  

  • 13. Mercurial-induced transformation of myosin prevented by adenosine triphosphate and pyrophosphate.
    Kominz DR
    Science; 1965 Sep; 149(3690):1374-5. PubMed ID: 4283926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of ADP of F-actin in superprecipitation and enzymatic activity of actomyosin.
    Tokiwa T; Shimada T; Tonomura Y
    J Biochem; 1967 Jan; 61(1):108-22. PubMed ID: 4227794
    [No Abstract]   [Full Text] [Related]  

  • 15. Role of adenosine triphosphate in the relaxation of skeletal muscle myofibrils.
    Eisenberg E; Moos C
    Arch Biochem Biophys; 1965 Jun; 110(3):568-76. PubMed ID: 5891458
    [No Abstract]   [Full Text] [Related]  

  • 16. Light-scattering studies on rabbit brain microsomes. II. Efects of ATP and chelation of Mg2+ on microsomal contraction.
    Kamino K
    Biochim Biophys Acta; 1969 Jun; 183(1):48-57. PubMed ID: 4978350
    [No Abstract]   [Full Text] [Related]  

  • 17. [Age changes in the properties of contractile protein from albino rat liver mitochondria].
    Razumovich AN; Lastovskaia TG
    Biokhimiia; 1971; 36(1):53-9. PubMed ID: 4253965
    [No Abstract]   [Full Text] [Related]  

  • 18. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport.
    Makinose M
    Eur J Biochem; 1969 Aug; 10(1):74-82. PubMed ID: 4242109
    [No Abstract]   [Full Text] [Related]  

  • 19. An ATP-induced conformational change in the acto-H-meromyosin system.
    Iyengar MR; Glauser SC; Davies RE
    Biochem Biophys Res Commun; 1964 Jul; 16(4):379-83. PubMed ID: 5871824
    [No Abstract]   [Full Text] [Related]  

  • 20. On the active site of myosin A-adenosine triphosphatase. VII. Effect of trinitrophenylation of myosin on the decomposition of phosphoryl myosin.
    Tokuyama H; Tonomura Y
    J Biochem; 1967 Oct; 62(4):456-63. PubMed ID: 4231495
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.