These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 422906)
1. Hysteresis, oscillations, and pattern formation in realistic immobilized enzyme systems. Kernevez JP; Joly G; Duban MC; Bunow B; Thomas D J Math Biol; 1979 Jan; 7(1):41-56. PubMed ID: 422906 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal behaviors in immobilized enzyme systems. Hervagault JF; Friboulet A; Kernevez JP; Thomas D Biochimie; 1980; 62(5-6):367-73. PubMed ID: 17941445 [TBL] [Abstract][Full Text] [Related]
3. OXYGEN-HEMOGLOBIN SYSTEM: A MODEL FOR FACILITATED MEMBRANOUS TRANSPORT. ZILVERSMIT DB Science; 1965 Aug; 149(3686):874-6. PubMed ID: 14332850 [TBL] [Abstract][Full Text] [Related]
4. Mathematical modeling of immobilized enzyme systems. Kernevez JP; Doedel EJ; Thomas D Biomed Biochim Acta; 1985; 44(6):993-1003. PubMed ID: 4038294 [TBL] [Abstract][Full Text] [Related]
5. Self-sustained pH oscillations in immobilized proteolytic enzyme systems. Ohmori T; Yang RY Biophys Chem; 1996 Mar; 59(1-2):87-94. PubMed ID: 8867329 [TBL] [Abstract][Full Text] [Related]
6. Steady state bifurcation analysis of reaction-diffusion equations--a critique. van der Werff TJ; Wilhelm HE Bull Math Biol; 1978; 40(6):865-72. PubMed ID: 743574 [No Abstract] [Full Text] [Related]
7. [The simplest biochemical autogenerator--open enzyme reaction, S in equilibrium with P, with substrate inhibition]. Kaĭmachnikov NP; Sel'kov EE Biofizika; 1976; 21(3):428-33. PubMed ID: 963090 [TBL] [Abstract][Full Text] [Related]
8. Dynamic patterns of brain cell assemblies. II. Concept of dynamic patterns. Eigen's theory of self-organization of matter. Neurosci Res Program Bull; 1974 Mar; 12(1):46-8. PubMed ID: 4844484 [No Abstract] [Full Text] [Related]
9. The effects of ionic migration on oscillations and pattern formation in chemical systems. Jorné J J Theor Biol; 1974 Feb; 43(2):375-80. PubMed ID: 4818353 [No Abstract] [Full Text] [Related]
10. Parameter space for turing instability in reaction diffusion mechanisms: a comparison of models. Murray JD J Theor Biol; 1982 Sep; 98(1):143-63. PubMed ID: 7176665 [No Abstract] [Full Text] [Related]
11. A machine-independent language for the simulation of complex chemical and biochemical systems. Garfinkel D Comput Biomed Res; 1968 Aug; 2(1):31-44. PubMed ID: 5743538 [No Abstract] [Full Text] [Related]
12. [Hysteresis, multiplicity of stationary states and auto-oscillations in the reversible flow-through reaction]. Sel'kov EE; Dynnik SN Biofizika; 1976; 21(2):214-9. PubMed ID: 1268265 [TBL] [Abstract][Full Text] [Related]
13. Introduction to 'Recent progress and open frontiers in Turing's theory of morphogenesis'. Krause AL; Gaffney EA; Maini PK; Klika V Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20200280. PubMed ID: 34743606 [TBL] [Abstract][Full Text] [Related]
14. Spatial patterns for an interaction-diffusion equation in morphogenesis. Mimura MA; Nishiura Y J Math Biol; 1979 Apr; 7(3):243-63. PubMed ID: 469412 [TBL] [Abstract][Full Text] [Related]
15. Quantum dynamics of chemical reactions. Clary DC Science; 2008 Aug; 321(5890):789-91. PubMed ID: 18687951 [No Abstract] [Full Text] [Related]
16. A comparison of variant theories of intact biochemical systems. I. Enzyme-enzyme interactions and biochemical systems theory. Sorribas A; Savageau MA Math Biosci; 1989 Jun; 94(2):161-93. PubMed ID: 2520168 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the coupled transport, reaction, and deactivation phenomena in the immobilized glucose oxidase and catalase system. Reuss M; Buchholz K Biotechnol Bioeng; 1979 Nov; 21(11):2061-81. PubMed ID: 486720 [TBL] [Abstract][Full Text] [Related]
18. [Oscillations and resonance phenomena in the simple, open enzymatic reaction--S-E-P-- reacting with an enzyme-forming system]. Sel'kov EE; Nazarenko VG Biofizika; 1981; 26(1):17-21. PubMed ID: 7225446 [TBL] [Abstract][Full Text] [Related]
19. Some analytical results about a simple reaction-diffusion system for morphogenesis. Rothe F J Math Biol; 1979 May; 7(4):375-84. PubMed ID: 469415 [TBL] [Abstract][Full Text] [Related]