These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 4229637)

  • 21. Light-induced electron transfer, internal and external hydrogen ion changes, and phosphorylation in chromatophores of Rhodospirillum rubrum.
    Nishimura M; Kadota K; Chance B
    Arch Biochem Biophys; 1968 Apr; 125(1):308-17. PubMed ID: 5655426
    [No Abstract]   [Full Text] [Related]  

  • 22. Inhibition of energy conservation reactions in chromatophores of Rhodospirillum rubrum by antibiotics.
    Lucero H; Lescano WI; Vallejos RH
    Arch Biochem Biophys; 1978 Feb; 186(1):9-14. PubMed ID: 147053
    [No Abstract]   [Full Text] [Related]  

  • 23. Differences in sensitivity to valinomycin and nonactin of various photophosphorylating and photoreducing systems of Rhodospirillum rubrum chromatpohores.
    Gromet-Elhanan Z
    Biochim Biophys Acta; 1970 Nov; 223(1):174-82. PubMed ID: 4320754
    [No Abstract]   [Full Text] [Related]  

  • 24. The function of ubiquinone-10 both in the electron transport system and in the energy conservation system of chromatophores from Rhodospirillum rubrum.
    Yamamoto N; Hatakeyama H; Nishikawa K; Horio T
    J Biochem; 1970 Apr; 67(4):587-98. PubMed ID: 5453049
    [No Abstract]   [Full Text] [Related]  

  • 25. Energy-dependent changes in membranes of Rhodospirillum rubrum chromatophores as measured by 8-anilino-naphthalene-1-sulfonic acid.
    Vainio H; Baltscheffsky M; Baltscheffsky H; Azzi A
    Eur J Biochem; 1972 Oct; 30(2):301-6. PubMed ID: 4351437
    [No Abstract]   [Full Text] [Related]  

  • 26. Energy-linked reactions in photosynthetic bacteria. I. Succinatelinked ATP-driven NAD reduction by Rhodospirillum rubrum chromatophores.
    Keister DL; Yike NJ
    Arch Biochem Biophys; 1967 Aug; 121(2):415-22. PubMed ID: 4293589
    [No Abstract]   [Full Text] [Related]  

  • 27. Energy-linked reactions in photosynthetic bacteria. V. Relation of the light-induced proton uptake to photophosphorylation in R. rubrum chromatophores.
    Keister DL; Minton NJ
    Proc Natl Acad Sci U S A; 1969 Jun; 63(2):489-95. PubMed ID: 5257139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of aging resolved chromatophores of Rhodospirillum rubrum on the capacity to reconstitute the energy-linked transhydrogenation.
    Guber S; Konings AW; Guillory RJ
    Biochim Biophys Acta; 1972 Jan; 255(1):161-70. PubMed ID: 4400928
    [No Abstract]   [Full Text] [Related]  

  • 29. Changes in the fluorescence of atebrin and of anilino-naphthalene sulfonate reflecting two different light-induced processes in Rhodospirillum rubrum chromatophores.
    Gromet-Elhanan Z
    Eur J Biochem; 1972 Jan; 25(1):84-8. PubMed ID: 4623434
    [No Abstract]   [Full Text] [Related]  

  • 30. Role of bound ADP in photosynthetic ATP formation by chromatophores from Rhodospirillum rubrum.
    Yammamoto N; Yoshimura S; Higuti T; Nishikawa K; Horio T
    J Biochem; 1972 Dec; 72(6):1397-406. PubMed ID: 4198252
    [No Abstract]   [Full Text] [Related]  

  • 31. The light-induced, reversible pH change in chromatophores from Rhodospirillum rubrum.
    von Stedingk LV; Baltscheffsky H
    Arch Biochem Biophys; 1966 Nov; 117(2):400-4. PubMed ID: 5972824
    [No Abstract]   [Full Text] [Related]  

  • 32. Differential effect of Dio-9 on non-cyclic photophosphorylation and 14C-fixation in vivo.
    Gimmler H; Simonis W; Urbach W
    Naturwissenschaften; 1969 Jul; 56(7):371-2. PubMed ID: 5360902
    [No Abstract]   [Full Text] [Related]  

  • 33. Energy-linked reactions in photosynthetic bacteria. 3. Further studies on energy-linked nicotinamide-adenine dinucleotide reduction by Rhodospirillum rubrum chromatophores.
    Keister DL; Minton NJ
    Biochemistry; 1969 Jan; 8(1):167-73. PubMed ID: 4304986
    [No Abstract]   [Full Text] [Related]  

  • 34. On the use of bromthymol blue as an indicator of internal pH changes in chromatophores from Rhodospirillum rubrum.
    Gromet-Elhanan Z; Briller S
    Biochem Biophys Res Commun; 1969 Oct; 37(2):261-5. PubMed ID: 5823935
    [No Abstract]   [Full Text] [Related]  

  • 35. Energy-linked reactions in photosynthetic bacteria. IX. Pi-PPi exchange in Rhodospirillum rubrum.
    Keister DL; Raveed NJ
    J Biol Chem; 1974 Oct; 249(20):6454-8. PubMed ID: 4371026
    [No Abstract]   [Full Text] [Related]  

  • 36. Effect of ferredoxin on bacterial photophosphorylation.
    Shanmugam KT; Arnon DI
    Biochim Biophys Acta; 1972 Feb; 256(2):487-97. PubMed ID: 4622736
    [No Abstract]   [Full Text] [Related]  

  • 37. Inorganic pyrophosphate and ATP as energy donors in chromatophores from Rhodospirillum rubrum.
    Baltscheffsky M
    Nature; 1967 Oct; 216(5112):241-3. PubMed ID: 4293681
    [No Abstract]   [Full Text] [Related]  

  • 38. Photophosphorylation in presence and absence of added adenosine diphosphate in chromatophores from Rhodospirillum rubrum.
    Horio T; von Stedingk LV; Baltscheffsky H
    Acta Chem Scand; 1966; 20(1):1-10. PubMed ID: 5933524
    [No Abstract]   [Full Text] [Related]  

  • 39. Roles of ubiquinone-10 and rhodoquinone in photosynthetic formation of adenosine triphosphate by chromatophores from Rhodospirillum rubrum.
    Okayama S; Yamamoto N; Nishikawa K; Horio T
    J Biol Chem; 1968 Jun; 243(11):2995-9. PubMed ID: 5653187
    [No Abstract]   [Full Text] [Related]  

  • 40. Cytochrome c redox potentials as a function of the energy state in chromatophores.
    Jackson JB; Crofts AR
    Biochem J; 1970 Feb; 116(4):18P. PubMed ID: 4314125
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.