These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 423092)

  • 1. Effect of microcrystalline cellulose on liquid penetration in and disintegration of directly compressed tablets.
    Lerk CF; Bolhuis GK; de Boer AH
    J Pharm Sci; 1979 Feb; 68(2):205-11. PubMed ID: 423092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compaction properties of microcrystalline cellulose and sodium sulfathiazole in combination with talc or magnesium stearate.
    Williams RO; McGinity JW
    J Pharm Sci; 1989 Dec; 78(12):1025-34. PubMed ID: 2614693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermophysical properties of some pharmaceutical excipients compressed in tablets.
    Ketolainen J; Kubicár L; Bohác V; Markovic M; Paronen P
    Pharm Res; 1995 Nov; 12(11):1701-7. PubMed ID: 8592673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The properties of tablets containing microcrystalline cellulose.
    Sixsmith D
    J Pharm Pharmacol; 1977 Feb; 29(2):82-5. PubMed ID: 15069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of agglomerated directly compressible diluent consisting of brittle and ductile materials.
    Gohel MC; Jogani PD; Bariya SE
    Pharm Dev Technol; 2003; 8(2):143-51. PubMed ID: 12760565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting synergistic effects of brittle and plastic excipients in directly compressible formulations of sitagliptin phosphate and sitagliptin hydrochloride.
    Zakowiecki D; Edinger P; Papaioannou M; Hess T; Kubiak B; Terlecka A
    Pharm Dev Technol; 2022 Jul; 27(6):702-713. PubMed ID: 35913021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of addition of a soluble and an insoluble drug on the disintegration of tablets made of microcrystalline cellulose and dicalcium phosphate dihydrate.
    Chilamkurti RN; Schwartz JB; Rhodes CT
    Pharm Acta Helv; 1983; 58(9-10):251-5. PubMed ID: 6634813
    [No Abstract]   [Full Text] [Related]  

  • 8. Microcrystalline cellulose, a direct compression binder in a quality by design environment--a review.
    Thoorens G; Krier F; Leclercq B; Carlin B; Evrard B
    Int J Pharm; 2014 Oct; 473(1-2):64-72. PubMed ID: 24993785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A study of the properties of tablets from mixtures of two size degrees of alpha-lactose monohydrate and microcrystalline cellulose].
    Muzíková J
    Ceska Slov Farm; 2006 Mar; 55(2):72-7. PubMed ID: 16570584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration.
    Yang B; Wei C; Yang Y; Wang Q; Li S
    Drug Dev Ind Pharm; 2018 Sep; 44(9):1417-1425. PubMed ID: 29557692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of micronized poloxamers as lubricants in direct compression of tablets.
    Muzíková J; Vyhlídalová B; Pekárek T
    Acta Pol Pharm; 2013; 70(6):1087-96. PubMed ID: 24383332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile.
    Hosseini A; Körber M; Bodmeier R
    Int J Pharm; 2013 Dec; 457(2):503-9. PubMed ID: 23892153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients.
    Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W
    Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression.
    Nakamura S; Tanaka C; Yuasa H; Sakamoto T
    AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength.
    He X; Secreast PJ; Amidon GE
    J Pharm Sci; 2007 May; 96(5):1342-55. PubMed ID: 17455360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging of tablets made with dibasic calcium phosphate dihydrate as matrix.
    Lausier JM; Chiang CW; Zompa HA; Rhodes CT
    J Pharm Sci; 1977 Nov; 66(11):1636-7. PubMed ID: 915749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of Fragmentation of Pharmaceutical Materials After Tableting.
    Skelbæk-Pedersen A; Vilhelmsen T; Wallaert V; Rantanen J
    J Pharm Sci; 2019 Mar; 108(3):1246-1253. PubMed ID: 30391301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical conductance of directly compressible materials under pressure.
    Bhatia RP; Lordi NG
    J Pharm Sci; 1979 Feb; 68(2):222-6. PubMed ID: 423096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclodextrin polymer, a new tablet disintegrating agent.
    Fenyvest E; Antal B; Zsadon B; Szejtli J
    Pharmazie; 1984 Jul; 39(7):473-5. PubMed ID: 6494226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.