These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 4231152)

  • 1. Alpha-glucosidase synthesis, respiratory enzymes and catabolite repression in yeast. 3. The correlation between the synthesis of alpha-glucosidase and that of some respiratory enzymes.
    van Wijk R
    Proc K Ned Akad Wet C; 1968; 71(2):137-51. PubMed ID: 4231152
    [No Abstract]   [Full Text] [Related]  

  • 2. Alpha-glucosidase synthesis, respiratory enzymes and catabolite repression in yeast. II. The effects of glucose on inducible and on constitutive alpha-glucosidase synthesis in whole yeast cells.
    van Wijk R
    Proc K Ned Akad Wet C; 1968; 71(1):72-9. PubMed ID: 4230531
    [No Abstract]   [Full Text] [Related]  

  • 3. The regulation of synthesis of Krebs cycle enzymes in Neurospora by catabolite and end product repression.
    Flavell RB; Woodward DO
    Eur J Biochem; 1970 Apr; 13(3):548-53. PubMed ID: 5444160
    [No Abstract]   [Full Text] [Related]  

  • 4. Alpha-glucosidase synthesis, respiratory enzymes and catabolite repression in yeast. I. The effects of glucose and maltose on inducible alpha-glucosidase synthesis in protoplasts of S. carlsbergensis.
    van Wijk R
    Proc K Ned Akad Wet C; 1968; 71(1):60-71. PubMed ID: 4230530
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli.
    Gray CT; Wimpenny JW; Mossman MR
    Biochim Biophys Acta; 1966 Mar; 117(1):33-41. PubMed ID: 5330664
    [No Abstract]   [Full Text] [Related]  

  • 6. Alpha-glucosidase synthesis, respiratory enzymes and catabolite repression in yeast. IV. B. Studies on the level of protein synthesis at which repression and induction of alpha-glucosidase synthesis occur.
    van Wijk R
    Proc K Ned Akad Wet C; 1968; 71(3):300-13. PubMed ID: 4233311
    [No Abstract]   [Full Text] [Related]  

  • 7. Alpha-glucosidase synthesis, respiratory enzymes and catabolite repression in yeast. IV. A. Studies on the level of protein synthesis at which repression and induction of alpha-glucosidase synthesis occur.
    van Wijk R
    Proc K Ned Akad Wet C; 1968; 71(3):293-301. PubMed ID: 4233310
    [No Abstract]   [Full Text] [Related]  

  • 8. Catabolite repression and lagtime during alpha-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis.
    van Wijk R
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:I11-2. PubMed ID: 5312030
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation of aconitase synthesis in Bacillus subtilis: induction, feedback repression, and catabolite repression.
    Ohné M
    J Bacteriol; 1974 Mar; 117(3):1295-305. PubMed ID: 4205196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of mutants of Bacillus stearothermophilus blocked in catabolic function.
    Rowe JJ; Goldberg ID; Amelunxen RE
    Can J Microbiol; 1973 Dec; 19(12):1521-3. PubMed ID: 4149949
    [No Abstract]   [Full Text] [Related]  

  • 11. Some aspects of catabolite repression of mitochondrial enzymes in Saccharomyces cerevisiae.
    Görts CP
    Antonie Van Leeuwenhoek; 1971; 37(2):161-9. PubMed ID: 5314549
    [No Abstract]   [Full Text] [Related]  

  • 12. Ribosome and enzyme changes during maturation and germination of the castor bean seed.
    Marrè E
    Curr Top Dev Biol; 1967; 2():75-105. PubMed ID: 5634086
    [No Abstract]   [Full Text] [Related]  

  • 13. Influence of dilution rate on enzyme synthesis in Aspergillus niger in continuous culture.
    Ng AM; Smith JE; McIntosh AF
    J Gen Microbiol; 1974 Apr; 81(2):425-34. PubMed ID: 4365536
    [No Abstract]   [Full Text] [Related]  

  • 14. COMPARISONS OF THE PHOSPHOGLUCONATE OXIDATIVE PATHWAY IN NORMAL AND RESPIRATION-DEFICIENT MUTANT YEAST.
    KOVACHEVICH R; BARRON ES
    Arch Biochem Biophys; 1964 Nov; 108():200-6. PubMed ID: 14240568
    [No Abstract]   [Full Text] [Related]  

  • 15. The biogenesis of mitochondria. IX. Formation of the soluble mitochondrial enzymes malate dehydrogenase and fumarase in Saccharomyces cerevisiae.
    Vary MJ; Edwards CL; Stewart PR
    Arch Biochem Biophys; 1969 Mar; 130(1):235-43. PubMed ID: 4305159
    [No Abstract]   [Full Text] [Related]  

  • 16. The tricarboxylic acid cycle in Thiobacillus denitrificans and Thiobacillus-A2.
    Peeters TL; Liu MS; Aleem MI
    J Gen Microbiol; 1970 Nov; 64(1):29-35. PubMed ID: 5516607
    [No Abstract]   [Full Text] [Related]  

  • 17. Histochemical observations on oxidative enzymes in periodontal tissues during experimental tooth movement in the rat.
    Deguchi T; Mori M
    Arch Oral Biol; 1968 Jan; 13(1):49-59. PubMed ID: 5237554
    [No Abstract]   [Full Text] [Related]  

  • 18. Release of enzymes from bakers' yeast by disruption in an industrial homogenizer.
    Follows M; Heterington PJ; Dunnill P; Lilly MD
    Biotechnol Bioeng; 1971 Jul; 13(4):549-60. PubMed ID: 4944069
    [No Abstract]   [Full Text] [Related]  

  • 19. Citric acid cycle dehydrogenases and hexose monophosphate dehydrogenases in macroglia.
    Blunt MJ
    Proc Aust Assoc Neurol; 1968; 5(1):125-8. PubMed ID: 5709951
    [No Abstract]   [Full Text] [Related]  

  • 20. Catabolite repression of aconitate hydratase in Bacillus subtilis.
    Cox DP; Hanson RS
    Biochim Biophys Acta; 1968 Apr; 158(1):36-44. PubMed ID: 4968068
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.