These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 423118)
41. An alternative perspective of hollow fiber-mediated extraction: Bundled hollow fiber array-liquid-phase microextraction with sonication-assisted desorption and liquid chromatography-tandem mass spectrometry for determination of estrogens in aqueous matrices. Goh SX; Lee HK J Chromatogr A; 2017 Mar; 1488():26-36. PubMed ID: 28185621 [TBL] [Abstract][Full Text] [Related]
42. Ultra-high performance liquid chromatography/tandem mass spectrometry determination of feminizing chemicals in river water, sediment and tissue pretreated using disk-type solid-phase extraction and matrix solid-phase dispersion. Chen WL; Wang GS; Gwo JC; Chen CY Talanta; 2012 Jan; 89():237-45. PubMed ID: 22284486 [TBL] [Abstract][Full Text] [Related]
43. Comparative study of an estradiol enzyme-linked immunosorbent assay kit, liquid chromatography-tandem mass spectrometry, and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry for part-per-trillion analysis of estrogens in water samples. Farré M; Kuster M; Brix R; Rubio F; López de Alda MJ; Barceló D J Chromatogr A; 2007 Aug; 1160(1-2):166-75. PubMed ID: 17540393 [TBL] [Abstract][Full Text] [Related]
44. [Determination of six kinds of estrogens in cosmetics by liquid chromatograph-tandem mass spectrometry]. Wang J; Zhou Z; Lin S Wei Sheng Yan Jiu; 2010 May; 39(3):383-5. PubMed ID: 20568476 [TBL] [Abstract][Full Text] [Related]
45. [Determination of trace estrogens in cosmetic water by liquid-phase microextraction coupled with high performance liquid chromatography]. Xiao X; Yin Y; Hu Y; Li G Se Pu; 2007 Mar; 25(2):234-7. PubMed ID: 17580694 [TBL] [Abstract][Full Text] [Related]
46. High pressure liquid chromatographic separation and identification of estrogens. Roos RW J Assoc Off Anal Chem; 1980 Jan; 63(1):80-7. PubMed ID: 7380796 [TBL] [Abstract][Full Text] [Related]
47. Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detector for the determination of estrogens in environmental water samples. Hu C; He M; Chen B; Zhong C; Hu B J Chromatogr A; 2013 Oct; 1310():21-30. PubMed ID: 23992883 [TBL] [Abstract][Full Text] [Related]
48. Supercritical fluid chromatography of selected oestrogens. Jagota NK; Stewart JT J Pharm Biomed Anal; 1992 Sep; 10(9):667-73. PubMed ID: 1286131 [TBL] [Abstract][Full Text] [Related]
49. High-pressure liquid chromatographic separation of pharmaceutical compounds using a mobile phase containing silver nitrate. Tscherne RJ; Capitano G J Chromatogr; 1977 Jun; 136(2):337-41. PubMed ID: 195970 [No Abstract] [Full Text] [Related]
50. Analysis of estrogenic contaminants in river water using liquid chromatography coupled to ion trap based mass spectrometry. Benijts T; Dams R; Günther W; Lambert W; Leenheer AD Rapid Commun Mass Spectrom; 2002; 16(14):1358-64. PubMed ID: 12112616 [TBL] [Abstract][Full Text] [Related]
51. Quantitative analysis of conjugated and free estrogens in swine manure: solutions to overcome analytical problems due to matrix effects. Singh AK; Gupta S; Kumar K; Gupta S; Chander Y; Gupta A; Saxena R J Chromatogr A; 2013 Aug; 1305():203-12. PubMed ID: 23891380 [TBL] [Abstract][Full Text] [Related]
52. Hollow-fiber-supported liquid-phase microextraction using an ionic liquid as the extractant for the pre-concentration of bisphenol A, 17-β-estradiol, estrone and diethylstilbestrol from water samples with HPLC detection. Zou Y; Zhang Z; Shao X; Chen Y; Wu X; Yang L; Zhu J; Zhang D Water Sci Technol; 2014; 69(5):1028-35. PubMed ID: 24622552 [TBL] [Abstract][Full Text] [Related]
53. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase. Šatínský D; Brabcová I; Maroušková A; Chocholouš P; Solich P Anal Bioanal Chem; 2013 Jul; 405(18):6105-15. PubMed ID: 23657456 [TBL] [Abstract][Full Text] [Related]
54. Determination of estrogens in dosage forms by fluorescence using dansyl chloride. Fishman S J Pharm Sci; 1975 Apr; 64(4):674-80. PubMed ID: 238016 [TBL] [Abstract][Full Text] [Related]
55. Analysis of dienestrol and its dosage forms by high-performance liquid chromatography. Bailey LC; Bailey CA J Pharm Sci; 1979 Apr; 68(4):508-10. PubMed ID: 438981 [TBL] [Abstract][Full Text] [Related]
56. A randomized, multiple-dose parallel study to compare the pharmacokinetic parameters of synthetic conjugated estrogens, A, administered as oral tablet or vaginal cream. Bhamra RK; Margolis MB; Liu JH; Hendy CH; Jenkins RG; DiLiberti CE Menopause; 2011 Apr; 18(4):393-9. PubMed ID: 21107298 [TBL] [Abstract][Full Text] [Related]
57. Determination of 2-(4-isobutylphenyl)propionic acid in bulk drug and compressed tablets by reversed-phase high-performance liquid chromatography. Asmus PA J Chromatogr; 1985 Aug; 331(1):169-76. PubMed ID: 4044737 [TBL] [Abstract][Full Text] [Related]
59. Cytotoxicity of estradiol, equilin, equilenin, and their derivatives on Chinese hamster V79 cells. Oda T; Ikeda N; Nakashima S; Sato Y Drug Chem Toxicol; 2002 Feb; 25(1):75-82. PubMed ID: 11850971 [TBL] [Abstract][Full Text] [Related]
60. Rapid and specific high-pressure liquid chromatographic assay for folic acid in multivitamin-mineral pharmaceutical preparations. Tafolla WH; Sarapu AC; Dukes GR J Pharm Sci; 1981 Nov; 70(11):1273-6. PubMed ID: 7299676 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]