These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 4231837)

  • 1. [Heart metabolism disturbances caused by poisoning with monoiodoacetate, arsenate and l-fluoro-2,4-dinitrobenzene].
    Gercken G
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1967; 257(1):22-3. PubMed ID: 4231837
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolite status of the heart in acute insufficiency due to 1-fluoro-2,4-dinitrobenzene.
    Gercken G; Schlette U
    Experientia; 1968 Jan; 24(1):17-9. PubMed ID: 5637602
    [No Abstract]   [Full Text] [Related]  

  • 3. Inhibition of phosphate and arsenate uptake in yeast by monoiodoacetate, fluoride, 2,4-dinitrophenol and acetate.
    Borst-Pauwels GW; Jager S
    Biochim Biophys Acta; 1969 Apr; 172(3):399-406. PubMed ID: 5782246
    [No Abstract]   [Full Text] [Related]  

  • 4. Function, substrate supply, and metabolic content of rabbit heart perfused in situ.
    Thorn W; Gercken G; Hürter P
    Am J Physiol; 1968 Jan; 214(1):139-45. PubMed ID: 5634517
    [No Abstract]   [Full Text] [Related]  

  • 5. Temporal correlation between initial increase in active outward Na transport and energy metabolism in the canine carotid artery during metabolic poisoning by monoiodoacetate.
    Siegel G; Schott A; Koepchen HP
    Pflugers Arch; 1969; 312(1):R48-9. PubMed ID: 5390258
    [No Abstract]   [Full Text] [Related]  

  • 6. [Biochemical changes in heart arrest].
    Krause EG
    Z Gesamte Inn Med; 1969 Jan; 24(2):Suppl:19-24. PubMed ID: 5795691
    [No Abstract]   [Full Text] [Related]  

  • 7. The mechanism of inhibition of glycolysis by quinidine in heart tissue in vitro.
    Horn RS
    Biochem Pharmacol; 1968 Aug; 17(8):1717-25. PubMed ID: 4233761
    [No Abstract]   [Full Text] [Related]  

  • 8. High-energy myocardial phosphates during resuscitation.
    Dolata W; Sapota J; Debowy J; Dynarowicz I; Lój W
    Pol Med J; 1970; 9(5):1183-8. PubMed ID: 5510285
    [No Abstract]   [Full Text] [Related]  

  • 9. In vitro studies of beating heart cells in culture. XII. The utilization of ATP and phosphocreatine in oligomycin and 2-deoxyglucose inhibited cells.
    Seraydarian MW; Sato E; Savageau M; Harary I
    Biochim Biophys Acta; 1969 Jun; 180(2):264-70. PubMed ID: 5795469
    [No Abstract]   [Full Text] [Related]  

  • 10. [Energy-rich phosphate compounds in the myocardium under the influence of adrenaline, noradrenaline and isoproterenol].
    Krautzberger W; Kammermeier H; Kammermeier B
    Pflugers Arch; 1969; 312(1):R6-7. PubMed ID: 5390286
    [No Abstract]   [Full Text] [Related]  

  • 11. [Influence of the administration of digoxin on the myocardial level of ATP and phosphocreatine].
    Borredon P; Lamarche M
    C R Seances Soc Biol Fil; 1971; 165(6):1430-1. PubMed ID: 4262057
    [No Abstract]   [Full Text] [Related]  

  • 12. ATP level and control of glycolysis in Novikoff ascites-hepatoma cells.
    Nigam VN
    Enzymologia; 1969; 36(4):257-68. PubMed ID: 4306660
    [No Abstract]   [Full Text] [Related]  

  • 13. [Animal experiment for the detection of metabolic changes after iron uptake].
    Lujf A; Moser K; Schnack H
    Z Gesamte Exp Med Einschl Exp Chir; 1966; 140(4):287-93. PubMed ID: 5991290
    [No Abstract]   [Full Text] [Related]  

  • 14. [Metabolism of phosphorus esters in the Rana temporaria sartorius treated with a hypertonic Ringer solution].
    Daemers-Lambert C; Debrun FM; Dethier G; Manil J
    Arch Int Physiol Biochim; 1966 Jun; 74(3):374-96. PubMed ID: 4162220
    [No Abstract]   [Full Text] [Related]  

  • 15. [Role of acetylcholine in adrenaline stimulation of the metabolism of macroenergetic phosphates in the heart muscle].
    Garbuliński T; Debowy J; Lój W; Dynarowicz I
    Acta Physiol Pol; 1969; 20(5):693-9. PubMed ID: 5385317
    [No Abstract]   [Full Text] [Related]  

  • 16. Glycolytic control mechanisms. 3. Effects of iodoacetamide and fluoroacetate on glucose metabolism in the perfused rat heart.
    Williamson JR
    J Biol Chem; 1967 Oct; 242(19):4476-85. PubMed ID: 4229046
    [No Abstract]   [Full Text] [Related]  

  • 17. [On the activity of phosphorylase, the rate of glycolysis and the behavior of phosphocreatines and orthophosphates in the myocardium of the guinea pig in circulatory arrest].
    Krause EG; Wollenberger A
    Acta Biol Med Ger; 1966; 16(6):595-605. PubMed ID: 5987785
    [No Abstract]   [Full Text] [Related]  

  • 18. [Compparison of the influence of vagotomy and atropine on the metabolism of macroenergetic phosphates in the heart muscle].
    Garbuliński T; Debowy J; Lój W; Dynarowicz I
    Acta Physiol Pol; 1969; 20(5):701-7. PubMed ID: 5385318
    [No Abstract]   [Full Text] [Related]  

  • 19. [Biochemical changes in cardiac arrest].
    Krause EG
    Z Gesamte Inn Med; 1969 Jan; 24(1):Suppl:19-24. PubMed ID: 4248367
    [No Abstract]   [Full Text] [Related]  

  • 20. [Phosphate compounds in isolated, perfused hearts during pH variation due to changes in extracellular PCO2 and bicarbonate].
    Kammermeier H; Rudroff W; Krautzberger W; Gerlach E
    Pflugers Arch; 1969; 312(1):R10-1. PubMed ID: 5390157
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.