These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 4232392)
1. Proton translocation coupled to ATP hydrolysis in rat liver mitochondria. Mitchell P; Moyle J Eur J Biochem; 1968 May; 4(4):530-9. PubMed ID: 4232392 [No Abstract] [Full Text] [Related]
2. Localization of oligomycin-sensitive ADP-ATP exchange activity in rat liver mitochondria. Schnaitman CA; Pedersen PL Biochem Biophys Res Commun; 1968 Feb; 30(4):428-33. PubMed ID: 4230014 [No Abstract] [Full Text] [Related]
3. Effects of monazomycin on ion transport and oxidative phosphorylation in liver mitochondria. Estrada-O S; Gómez-Lojero C Biochemistry; 1971 Apr; 10(9):1598-603. PubMed ID: 4253013 [No Abstract] [Full Text] [Related]
4. [Possible mechanism of calcium, hydrogen and phosphate ion transport through mitochondrial membrane]. Evtodienko IuV; Peshkova LV; Shchipakin VN Ukr Biokhim Zh; 1971; 43(1):98-104. PubMed ID: 4253961 [No Abstract] [Full Text] [Related]
5. Proton movements across the mitochondrial membrane supported by hydrolysis of adenosine triphosphate. Rossi CS; Siliprandi N; Carafoli E; Bielawski J; Lehninger AL Eur J Biochem; 1967 Oct; 2(3):332-40. PubMed ID: 4965707 [No Abstract] [Full Text] [Related]
6. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate. Winkler F; Suko J Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259 [No Abstract] [Full Text] [Related]
7. Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Bakeeva LE; Grinius LL; Jasaitis AA; Kuliene VV; Levitsky DO; Liberman EA; Severina II; Skulachev VP Biochim Biophys Acta; 1970 Aug; 216(1):13-21. PubMed ID: 4250571 [No Abstract] [Full Text] [Related]
8. Proton translocation quotient for the adenosine triphosphatase of rat liver mitochondria. Moyle J; Mitchell P FEBS Lett; 1973 Mar; 30(3):317-20. PubMed ID: 4267054 [No Abstract] [Full Text] [Related]
9. Efflux of adenine nucleotides from rat liver mitochondria. Meisner H; Klingenberg M J Biol Chem; 1968 Jul; 243(13):3631-9. PubMed ID: 4968800 [No Abstract] [Full Text] [Related]
10. [DNP-stimulated proton efflux in mitochondria]. Dargel R Acta Biol Med Ger; 1969; 23(4):564-78. PubMed ID: 4987635 [No Abstract] [Full Text] [Related]
11. Correlations between ATP hydrolysis, ATP synthesis, generation and utilization of delta pH in mitochondrial ATPase-ATP synthase. Deléage G; Penin F; Godinot C; Gautheron DC Biochim Biophys Acta; 1983 Dec; 725(3):464-71. PubMed ID: 6197086 [TBL] [Abstract][Full Text] [Related]
12. Relationships between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis. Blostein R J Biol Chem; 1968 Apr; 243(8):1957-65. PubMed ID: 4230833 [No Abstract] [Full Text] [Related]
13. Partial resolution of the enzymes catalyzing photophosphorylation. 3. Activation of adenosine triphosphatase and 32P-labeled orthophosphate -adeno-sine triphosphate exchange in chloroplasts. McCarty RE; Racker E J Biol Chem; 1968 Jan; 243(1):129-37. PubMed ID: 4229830 [No Abstract] [Full Text] [Related]
14. The membrane ATPase of Escherichia coli. I. Ion dependence and ATP-ADP exchange reaction. Roisin MP; Kepes A Biochim Biophys Acta; 1972 Sep; 275(3):333-46. PubMed ID: 4262689 [No Abstract] [Full Text] [Related]
15. Mechanism of calcium and adenosine triphosphate induced pH changes in sarcotubular membrane fractions from rabbit skeletal muscle. Herniö UP; Saris NE Acta Physiol Scand; 1967 Apr; 69(4):295-303. PubMed ID: 4962152 [No Abstract] [Full Text] [Related]
16. Flip-flop model of energy interconversion by ATP synthetase. Repke KR; Schön R Acta Biol Med Ger; 1974; 33(1):K27-38. PubMed ID: 4278420 [No Abstract] [Full Text] [Related]
17. ROLE OF EDTA AND METALS IN MITOCHONDRIAL CONTRACTION. LYNN WS; FORTNEY S; BROWN RH J Cell Biol; 1964 Oct; 23(1):9-19. PubMed ID: 14228522 [TBL] [Abstract][Full Text] [Related]
18. Reaction mechanism of the ATPase activity of mitochondrial F1 studied by using a fluorescent ATP analog, 2'-(5-dimethylaminonaphthalene-1-sulfonyl) amino-2'-deoxyATP: its striking resemblance to that of myosin ATPase. Matsuoka I; Watanabe T; Tonomura Y J Biochem; 1981 Oct; 90(4):967-89. PubMed ID: 6458602 [No Abstract] [Full Text] [Related]
19. Proton translation in submitochondrial vesicles. House DR; Packer L J Bioenerg; 1971 Sep; 1(3):273-85. PubMed ID: 5002679 [No Abstract] [Full Text] [Related]