These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 423261)

  • 1. Transient and steady-state effects of sodium and calcium on myocardial contractile response.
    Tillisch JH; Fung LK; Hom PM; Langer GA
    J Mol Cell Cardiol; 1979 Feb; 11(2):137-48. PubMed ID: 423261
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of Na and Ca ions in the determination of isometrically developed tension of heart muscle.
    Mattiazzi AR; Cingolani HE; González NC; Blesa ES
    Arch Int Physiol Biochim; 1972 Jan; 80(1):121-32. PubMed ID: 4111289
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of calcium and sodium ion on the frequency-force relationship in cardiac muscle.
    Teiger DG; Farah A
    J Pharmacol Exp Ther; 1968 Nov; 164(1):1-9. PubMed ID: 5722101
    [No Abstract]   [Full Text] [Related]  

  • 4. Binding of Ca2+ and Na+ to sarcolemmal membranes: relation to control of myocardial contractility.
    Philipson KD; Bers DM; Nishimoto AY; Langer GA
    Am J Physiol; 1980 Mar; 238(3):H373-8. PubMed ID: 7369383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activated and rigor tensions in rat papillary muscle [proceedings].
    Vassort G; Ventura-Clapier R
    J Physiol; 1979 Jul; 292():79P-80P. PubMed ID: 490415
    [No Abstract]   [Full Text] [Related]  

  • 6. Rigor tension during metabolic and ionic rises in resting tension in rat heart.
    Ventura-Clapier R; Vassort G
    J Mol Cell Cardiol; 1981 Jun; 13(6):551-61. PubMed ID: 7277504
    [No Abstract]   [Full Text] [Related]  

  • 7. Phospholipase D produces increased contractile force in rabbit ventricular muscle.
    Langer GA; Rich TL
    Circ Res; 1985 Jan; 56(1):146-9. PubMed ID: 3967344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of extracellular calcium on contractile activation in guinea-pig ventricular muscle.
    Kitazawa T
    J Physiol; 1984 Oct; 355():635-59. PubMed ID: 6492006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of aging on the control of contractile force by Na(+)-Ca2+ exchange in rat papillary muscle.
    Abete P; Ferrara N; Cioppa A; Ferrara P; Bianco S; Calabrese C; Napoli C; Rengo F
    J Gerontol A Biol Sci Med Sci; 1996 Sep; 51(5):M251-9. PubMed ID: 8808998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of contractile function between papillary muscles and isolated myocytes from the same human hearts.
    Harding SE; Gurden JM; Poole-Wilson PA
    Cardioscience; 1991 Jun; 2(2):141-6. PubMed ID: 1878488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ryanodine on contractile performance of intact length-clamped papillary muscle.
    Urthaler F; Walker AA; Reeves RC; Hefner LL
    Circ Res; 1989 Nov; 65(5):1270-82. PubMed ID: 2805244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable diastolic compliance and variable Ca sensitivity of the contractile system in cardiac muscle.
    Winegrad S; McClellan G; Robinson T; Lai NP
    Eur J Cardiol; 1976 May; 4 Suppl():41-6. PubMed ID: 1278217
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of alpha- and beta-sympathomimetic agonists on calcium-dependent slow action potential and force of contraction in the rabbit papillary muscle.
    Handa Y; Wagner J; Inui J; Averesch H; Schümann HJ
    Naunyn Schmiedebergs Arch Pharmacol; 1982 Mar; 318(4):330-5. PubMed ID: 6123086
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparative inotropic response of newborn and adult rabbit papillary muscles to isoproterenol and calcium.
    Park MK; Sheridan PH; Morgan WW; Beck N
    Dev Pharmacol Ther; 1980; 1(1):70-82. PubMed ID: 7438967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct pharmacologic and osmolal effects of contrast media on the mechanics of heart muscle isolated from cats.
    Chuck LH; Refsum H; Rouleau JL; Mathey D; Sievers RE; Parmley WW
    Am Heart J; 1984 Jul; 108(1):97-104. PubMed ID: 6428210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency-force relationship in guinea-pig ventricular myocardium as influenced by magnesium.
    Vierling W; Reiter M
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 289(2):111-25. PubMed ID: 1165789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in the myocardial depressant action of thiopental and halothane.
    Komai H; Rusy BF
    Anesth Analg; 1984 Mar; 63(3):313-8. PubMed ID: 6703347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for hypothermia-induced increase in contractile force studied by mechanical restitution and post-rest contractions in guinea-pig papillary muscle.
    Bjørnstad H; Tande PM; Refsum H
    Acta Physiol Scand; 1993 Jul; 148(3):253-64. PubMed ID: 7692697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of temperature on the time course of the mechanical activity in rabbit papillary muscle.
    Mattiazzi AR; Nilsson E
    Acta Physiol Scand; 1976 Jul; 97(3):310-8. PubMed ID: 961442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Autoregulation of the contractile function of the myocardium in response to changes in the concentration of the activating cation].
    Kapel'ko VI; Gorina MS
    Fiziol Zh SSSR Im I M Sechenova; 1986 Mar; 72(3):357-62. PubMed ID: 3709864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.