These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 423310)

  • 21. Chronic toxicity and carcinogenicity guidelines.
    Page NP
    J Environ Pathol Toxicol; 1977; 1(2):161-82. PubMed ID: 553129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Approaches used by the US National Toxicology Program in assessing the toxicity of chemical mixtures.
    Schwetz BA; Yang RS
    IARC Sci Publ; 1990; (104):113-20. PubMed ID: 2228109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toxicology and pathology considerations for the design of juvenile animal studies.
    Seely JC
    Lab Anim (NY); 2008 May; 37(5):206-9. PubMed ID: 18431394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NCTR/NCI symposium on the use of inbred and outbred animals in toxicological testing: objectives of the conference.
    Wolff GL
    J Toxicol Environ Health; 1979 Jan; 5(1):1-3. PubMed ID: 423298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Considerations in receiving and quarantining laboratory rodents.
    Loew FM
    Lab Anim Sci; 1980 Apr; 30(2 Pt 2):323-9. PubMed ID: 7052387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Utilization of animal studies to determine the effects and human risks of environmental toxicants (drugs, chemicals, and physical agents).
    Brent RL
    Pediatrics; 2004 Apr; 113(4 Suppl):984-95. PubMed ID: 15060191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of pharmacokinetics as an interpretive and predictive tool in chemical toxicology testing and risk assessment: a position paper on the appropriate use of pharmacokinetics in chemical toxicology.
    Frantz SW; Beatty PW; English JC; Hundley SG; Wilson AG
    Regul Toxicol Pharmacol; 1994 Jun; 19(3):317-37. PubMed ID: 8090955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Harmonization of animal clinical pathology testing in toxicity and safety studies. The Joint Scientific Committee for International Harmonization of Clinical Pathology Testing.
    Weingand K; Brown G; Hall R; Davies D; Gossett K; Neptun D; Waner T; Matsuzawa T; Salemink P; Froelke W; Provost JP; Dal Negro G; Batchelor J; Nomura M; Groetsch H; Boink A; Kimball J; Woodman D; York M; Fabianson-Johnson E; Lupart M; Melloni E
    Fundam Appl Toxicol; 1996 Feb; 29(2):198-201. PubMed ID: 8742316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Statistical design of toxicity assays: role of genetic structure of test animal population.
    Haseman JK; Hoel DG
    J Environ Pathol Toxicol; 1979; 2(6):1313-27. PubMed ID: 528844
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of inbred strains and outbred stocks, with special reference to toxicity testing.
    Festing MF
    J Toxicol Environ Health; 1979 Jan; 5(1):53-68. PubMed ID: 423306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of genetic population structure on the results of chronic toxicity studies.
    Littlefield NA; Kodell RL
    J Toxicol Environ Health; 1979 Jan; 5(1):121-9. PubMed ID: 423299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How useful are chronic (life-span) toxicology studies in rodents in identifying pharmaceuticals that pose a carcinogenic risk to humans?
    Monro A
    Adverse Drug React Toxicol Rev; 1993; 12(1):5-34. PubMed ID: 8513076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo zebrafish assays for toxicity testing.
    Parng C
    Curr Opin Drug Discov Devel; 2005 Jan; 8(1):100-6. PubMed ID: 15679177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences.
    Calabrese EJ
    Environ Pollut; 2005 Dec; 138(3):379-411. PubMed ID: 16098930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A statistical evaluation of toxicity study designs for the estimation of the benchmark dose in continuous endpoints.
    Slob W; Moerbeek M; Rauniomaa E; Piersma AH
    Toxicol Sci; 2005 Mar; 84(1):167-85. PubMed ID: 15483190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical assessment of laboratory rodents on long term bioassay studies.
    Fox JG
    J Environ Pathol Toxicol; 1977; 1(2):199-226. PubMed ID: 399783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternative methods to safety studies in experimental animals: role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH).
    Lilienblum W; Dekant W; Foth H; Gebel T; Hengstler JG; Kahl R; Kramer PJ; Schweinfurth H; Wollin KM
    Arch Toxicol; 2008 Apr; 82(4):211-36. PubMed ID: 18322675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utilization of juvenile animal studies to determine the human effects and risks of environmental toxicants during postnatal developmental stages.
    Brent RL
    Birth Defects Res B Dev Reprod Toxicol; 2004 Oct; 71(5):303-20. PubMed ID: 15505806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Historical perspective on the use of animal bioassays to predict carcinogenicity: evolution in design and recognition of utility.
    Beyer LA; Beck BD; Lewandowski TA
    Crit Rev Toxicol; 2011 Apr; 41(4):321-38. PubMed ID: 21438739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Some genetic considerations for the design of better mammalian assay systems for the detection of chemical mutagens and carcinogens.
    Wolff GL
    J Environ Pathol Toxicol; 1977; 1(2):79-90. PubMed ID: 553144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.