BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 4235043)

  • 1. A possible mechanism of release of posterior pituitary hormones involving adenosine triphosphate and an adenosine triphosphatase in the neurosecretory granules.
    Poisner AM; Douglas WW
    Mol Pharmacol; 1968 Sep; 4(5):531-40. PubMed ID: 4235043
    [No Abstract]   [Full Text] [Related]  

  • 2. Adenosine triphosphate and adenosine triphosphatase in hormone-containing granules of posterior pituitary gland.
    Poisner AM; Douglas WW
    Science; 1968 Apr; 160(3824):203-4. PubMed ID: 4230606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of adenosine triphosphate and adenosine triphosphatase in the release of catecholamines from the adrenal medulla. 3. Similarities between the effects of adenosine triphosphate on chromaffin granules and on mitochondria.
    Poisner AM; Trifaró JM
    Mol Pharmacol; 1969 May; 5(3):294-9. PubMed ID: 4239374
    [No Abstract]   [Full Text] [Related]  

  • 4. [Mode of posterior pituitary hormone release].
    Ishida A
    Saishin Igaku; 1971 Apr; 26(4):656-64. PubMed ID: 4940014
    [No Abstract]   [Full Text] [Related]  

  • 5. Evidence for the storage of oxytocin with neurophysin-I and of vasopressin with neurophysin-II in separate neurosecretory granules.
    Dean CR; Hope DB; Kazić T
    Br J Pharmacol; 1968 Sep; 34(1):192P-193P. PubMed ID: 5676005
    [No Abstract]   [Full Text] [Related]  

  • 6. [Release of vasopressin, oxytocin and neurophysin as determined by radioimmunology during in vitro stimulation of the neurohypophysis in rats].
    Legros JJ; Stewart U; Nordmann JJ; Dreifuss JJ; Franchimont P
    C R Seances Soc Biol Fil; 1971; 165(12):2443-7. PubMed ID: 4263383
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of adenosine triphosphate and adenosine triphosphatase in the release of catecholamines from the adrenal medulla. IV. Adenosine triphosphate-- activated uptake of calcium by microsomes and mitochondria.
    Poisner AM; Hava M
    Mol Pharmacol; 1970 Jul; 6(4):407-15. PubMed ID: 4246825
    [No Abstract]   [Full Text] [Related]  

  • 8. Release of catecholamines from isolated adrenal chromaffin granules by endogenous ATP.
    Poisner AM; Trifaró JM
    Mol Pharmacol; 1968 Mar; 4(2):196-9. PubMed ID: 5645616
    [No Abstract]   [Full Text] [Related]  

  • 9. Relation between digitalis binding in vivo and inhibition of sodium, potassium-adenosine triphosphatase in canine kidney.
    Allen JC; Martinez-Maldonado M; Eknoyan G; Suki WN; Schwartz A
    Biochem Pharmacol; 1971 Jan; 20(1):73-80. PubMed ID: 4255110
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on isolated secretory granules from bovine neurohypophyses. Distribution of labelled granules on a density gradient. Release of tritiated lysine-vasopressin and endogenous arginine-vasopressin during stimulation procedures.
    Vilhardt H; Tondevold E
    Acta Endocrinol (Copenh); 1972 Aug; 70(4):625-35. PubMed ID: 5068395
    [No Abstract]   [Full Text] [Related]  

  • 11. ATP-induced release of vasopressin from isolated bovine neurohypophyseal secretory granules. Dependency on chloride and effects of analogues of ATP.
    Overgaard K; Torp-Pedersen C; Thorn NA
    Acta Endocrinol (Copenh); 1979 Apr; 90(4):609-15. PubMed ID: 433518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of neurophysin, oxytocin and arginine vasopressin in the rat.
    Burton AM; Forsling ML; Martin MJ
    J Physiol; 1971; 217 Suppl(Suppl):23P-24P. PubMed ID: 5571927
    [No Abstract]   [Full Text] [Related]  

  • 13. Binding of adenosine di- and triphosphates to myosin during the hydrolysis of adenosine triphosphate.
    Inoue A; Tonomura Y
    J Biochem; 1974 Oct; 76(4):755-64. PubMed ID: 4279914
    [No Abstract]   [Full Text] [Related]  

  • 14. SODIUM, POTASSIUM-REQUIRING ADENOSINETRIPHOSPHATASE ACTIVITY. I. PURIFICATION AND PROPERTIES.
    RENDI R; UHR ML
    Biochim Biophys Acta; 1964 Sep; 89():520-31. PubMed ID: 14209334
    [No Abstract]   [Full Text] [Related]  

  • 15. Proposed reaction mechanism for the (Na + + K + )-dependent adenosine triphosphatase.
    Robinson JD
    Nature; 1971 Oct; 233(5319):419-21. PubMed ID: 4256050
    [No Abstract]   [Full Text] [Related]  

  • 16. Adenosine triphosphatase activity and superprecipitation of canine cardiac myosin B.
    Tada M
    J Biochem; 1967 Dec; 62(6):658-72. PubMed ID: 4232005
    [No Abstract]   [Full Text] [Related]  

  • 17. Further studies on cold-induced release of vasopressin from isolated bovine neurosecretory granules.
    Hong JS; Poisner AM
    Neuroendocrinology; 1974; 16(3-4):165-77. PubMed ID: 4449585
    [No Abstract]   [Full Text] [Related]  

  • 18. Chromaffin granules: effects of ions and ATP on catecholamine content, ATPase activity, and membrane phosphorylation.
    Dworkind J; Trifaró JM
    Experientia; 1971; 27(11):1277-9. PubMed ID: 4257386
    [No Abstract]   [Full Text] [Related]  

  • 19. Behavior of an adenosine triphosphatase from mature rat uterus in response to calcium, magnesium, adenosinetriphosphate, oxytocin, and isoproterenol.
    Giri SN
    Arch Int Pharmacodyn Ther; 1969 Sep; 181(1):179-89. PubMed ID: 4242636
    [No Abstract]   [Full Text] [Related]  

  • 20. Influence of chloride ions and ATP-Mg++ on the release of catecholamines from isolated adrenal medullary granules.
    Lishajko F
    Acta Physiol Scand; 1969; 75(1):255-6. PubMed ID: 5785148
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.