These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4236334)

  • 1. [Mitochondrial proton liberation during adenosine triphosphate hydrolysis].
    Dargel R; Hofmann E
    Naturwissenschaften; 1968 Mar; 55(3):133. PubMed ID: 4236334
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidative phosphorylation as a function of temperature.
    Kemp A; Groot GS; Reitsma HJ
    Biochim Biophys Acta; 1969 May; 180(1):28-34. PubMed ID: 4239613
    [No Abstract]   [Full Text] [Related]  

  • 3. Localization of oligomycin-sensitive ADP-ATP exchange activity in rat liver mitochondria.
    Schnaitman CA; Pedersen PL
    Biochem Biophys Res Commun; 1968 Feb; 30(4):428-33. PubMed ID: 4230014
    [No Abstract]   [Full Text] [Related]  

  • 4. Differences between the phosphorylation potentials of adenosine triphosphate inside and outside the mitochondria.
    Heldt HW
    Biochem J; 1970 Feb; 116(4):15P. PubMed ID: 4244888
    [No Abstract]   [Full Text] [Related]  

  • 5. Mitochondrial ATPase activity and AdN translocation with epsilon-ATP as substrate.
    Kaplan RS; Coleman PS
    FEBS Lett; 1976 Mar; 63(1):179-83. PubMed ID: 131038
    [No Abstract]   [Full Text] [Related]  

  • 6. Properties of a nucleoside diphosphokinase from liver mitochondria and its relationship to the adenosine triphosphate-adenosine diphosphate exchange reaction.
    Glaze RP; Wadkins CL
    J Biol Chem; 1967 May; 242(9):2139-50. PubMed ID: 6022860
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of alloxan on mitochondrial adenosinetriphosphatase activity and the ATP-ADP exchange reaction.
    Younathan ES
    Arch Biochem Biophys; 1966 Feb; 113(2):439-43. PubMed ID: 4223157
    [No Abstract]   [Full Text] [Related]  

  • 8. Swelling-contraction of mitochondria in hypotonic medium.
    Suranyi EM; Avi-Dor Y
    Biochim Biophys Acta; 1966 Jun; 118(3):445-52. PubMed ID: 4226319
    [No Abstract]   [Full Text] [Related]  

  • 9. Activation of 2,4-dinitrophenol-stimulated ATPase activity in cauliflower and corn mitochondria.
    Jung DW; Hanson JB
    Arch Biochem Biophys; 1975 Jun; 168(2):358-68. PubMed ID: 124552
    [No Abstract]   [Full Text] [Related]  

  • 10. ATP synthesis of submitochondrial particles driven by proton gradient.
    Hatase O
    Acta Med Okayama (1952); 1969 Aug; 23(4):291-302. PubMed ID: 4243562
    [No Abstract]   [Full Text] [Related]  

  • 11. [Effect of 2,4-dinitrophenol on the content and specific activity of acid-soluble rat liver nucleotides].
    Zhivkov VI; Chelibonova-Lorer Kh; Panaĭotov BN
    Biokhimiia; 1970; 35(3):484-8. PubMed ID: 4248543
    [No Abstract]   [Full Text] [Related]  

  • 12. [Influence of palmitoyl carnitine on mitochondrial ATPases].
    Dargel R; Strack E; Thomitzek WD
    Acta Biol Med Ger; 1967; 18(2):155-62. PubMed ID: 4231333
    [No Abstract]   [Full Text] [Related]  

  • 13. Relationships between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis.
    Blostein R
    J Biol Chem; 1968 Apr; 243(8):1957-65. PubMed ID: 4230833
    [No Abstract]   [Full Text] [Related]  

  • 14. Demonstration of a Mg 2+ -activated adenosine triphosphatase in Trypanosoma cruzi.
    de Sastre MB; Stoppani AO
    FEBS Lett; 1973 Apr; 31(1):137-42. PubMed ID: 4267892
    [No Abstract]   [Full Text] [Related]  

  • 15. Proton translocation coupled to ATP hydrolysis in rat liver mitochondria.
    Mitchell P; Moyle J
    Eur J Biochem; 1968 May; 4(4):530-9. PubMed ID: 4232392
    [No Abstract]   [Full Text] [Related]  

  • 16. The pre-steady state of the myosin--adenosine triphosphate system. IV. Liberation of ADP from the myosin--ATP system and effects of modifiers on the phosphorylation of myosin.
    Imamura K; Tada M; Tonomura Y
    J Biochem; 1966 Mar; 59(3):280-9. PubMed ID: 4223370
    [No Abstract]   [Full Text] [Related]  

  • 17. [Control exercized by adrenalin on turnover time of ATP and ADP at the level of glycolysis and oxidative phosphorylations in muscle].
    Morelis R; Gautheron D
    Bull Soc Chim Biol (Paris); 1968; 50(12):2503-20. PubMed ID: 4306333
    [No Abstract]   [Full Text] [Related]  

  • 18. Studies on the nucleotide specificity of mitochondrial inner membrane particles.
    Hoppel C; Cooper C
    Arch Biochem Biophys; 1969 Dec; 135(1):184-93. PubMed ID: 4312069
    [No Abstract]   [Full Text] [Related]  

  • 19. Reversibility of ATP hydrolysis in catecholamine storage vesicles from bovine adrenal medulla.
    Taugner G; Wunderlich I; Junker D
    Naunyn Schmiedebergs Arch Pharmacol; 1980; 315(2):129-38. PubMed ID: 6451812
    [No Abstract]   [Full Text] [Related]  

  • 20. Unspecific permeation and specific exchange of adenine nucleotides in liver mitochondria.
    Pfaff E; Klingenberg M; Heldt HW
    Biochim Biophys Acta; 1965 Jun; 104(1):312-5. PubMed ID: 5840415
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.