BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 4236838)

  • 1. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Intermediate formation of phosphoryl protein.
    Yamamoto T; Tonomura Y
    J Biochem; 1968 Aug; 64(2):137-45. PubMed ID: 4236838
    [No Abstract]   [Full Text] [Related]  

  • 2. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal mus le. V. Vectorial requirements for calcium and magnesium ions of three partial reactions of ATPase: formation and decomposition of a phosphorylated intermediate and ATP-formation from ADP and the intermediate.
    Kanazawa T; Yamada A; Yamamoto T; Tonomura Y
    J Biochem; 1971 Jul; 70(1):95-123. PubMed ID: 4254539
    [No Abstract]   [Full Text] [Related]  

  • 3. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies.
    Yamamoto T; Tonomura Y
    J Biochem; 1967 Nov; 62(5):558-75. PubMed ID: 4231496
    [No Abstract]   [Full Text] [Related]  

  • 4. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 3. Ca plus-uptake and ATP-splitting.
    Yamada S; Yamamoto T; Tonomura Y
    J Biochem; 1970 Jun; 67(6):789-94. PubMed ID: 4247349
    [No Abstract]   [Full Text] [Related]  

  • 5. Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 8. Molecular mechanism of the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum.
    Yamada S; Sumida M; Tonomura Y
    J Biochem; 1972 Dec; 72(6):1537-48. PubMed ID: 4268997
    [No Abstract]   [Full Text] [Related]  

  • 6. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

  • 7. Reaction mechanism of the Ca 2+ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VI. Co-operative transition of ATPase activity during the initial phase.
    Yamada S; Yamamoto T; Kanazawa T; Tonomura Y
    J Biochem; 1971 Aug; 70(2):279-91. PubMed ID: 4255300
    [No Abstract]   [Full Text] [Related]  

  • 8. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2 plus translocation coupled with formation of a phosphorylated intermediate.
    Sumida M; Tonomura Y
    J Biochem; 1974 Feb; 75(2):283-97. PubMed ID: 4276200
    [No Abstract]   [Full Text] [Related]  

  • 9. A study of the phosphorylated intermediate of sarcoplasmic reticulum ATPase.
    Inesi G; Maring E; Murphy AJ; McFarland BH
    Arch Biochem Biophys; 1970 May; 138(1):285-94. PubMed ID: 4245930
    [No Abstract]   [Full Text] [Related]  

  • 10. Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport.
    Martonosi A
    J Biol Chem; 1969 Feb; 244(4):613-20. PubMed ID: 4238763
    [No Abstract]   [Full Text] [Related]  

  • 11. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. IV. Hydroxamate formation from a phosphorylated intermediate and 2-hydroxy-5-nitrobenzyl hydroxylamine.
    Yamamoto T; Yoda A; Tonomura Y
    J Biochem; 1971 Apr; 69(4):807-9. PubMed ID: 4252252
    [No Abstract]   [Full Text] [Related]  

  • 12. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport.
    Makinose M
    Eur J Biochem; 1969 Aug; 10(1):74-82. PubMed ID: 4242109
    [No Abstract]   [Full Text] [Related]  

  • 13. Sarcoplasmic reticulum. XI. The mode of involvement of phospholipids in the hydrolysis of ATP by sarcoplasmic reticulum membranes.
    Martonosi A; Donley JR; Pucell AG; Halpin RA
    Arch Biochem Biophys; 1971 Jun; 144(2):529-40. PubMed ID: 4328159
    [No Abstract]   [Full Text] [Related]  

  • 14. Sarcoplasmic reticulum. IX. The permeability of sarcoplasmic reticulum membranes.
    Duggan PF; Martonosi A
    J Gen Physiol; 1970 Aug; 56(2):147-67. PubMed ID: 4247172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors affecting the transient phase of the Ca2+, Mg2+-dependent ATPase reaction of sarcoplasmic reticulum from skeletal muscle.
    Takisawa H; Tonomura Y
    J Biochem; 1978 May; 83(5):1275-84. PubMed ID: 149120
    [No Abstract]   [Full Text] [Related]  

  • 16. Sarcoplasmic reticulum. XV. Dissociation of the membrane ATPase enzyme of sarcoplasmic reticulum into subunits by ultrasonic treatment.
    Pucell AG; Martonosi A
    Arch Biochem Biophys; 1972 Aug; 151(2):558-64. PubMed ID: 4261593
    [No Abstract]   [Full Text] [Related]  

  • 17. Sarcoplasmic reticulum. 3. The role of phospholipids in the adenosine triphosphatase activity and Ca++ transport.
    Martonosi A; Donley J; Halpin RA
    J Biol Chem; 1968 Jan; 243(1):61-70. PubMed ID: 4229832
    [No Abstract]   [Full Text] [Related]  

  • 18. Studies on the radiocalcium uptake and the adenosine triphosphatases of skeletal and cardiac sarcoplasmic reticulum fractions (SRF).
    Scales B; McIntosh DA
    J Pharmacol Exp Ther; 1968 Apr; 160(2):249-60. PubMed ID: 4296695
    [No Abstract]   [Full Text] [Related]  

  • 19. Free fatty acids as a factor modifying properties of fragmented sarcoplasmic reticulum during ageing.
    Sarzala MG; Drabikowski W
    Life Sci; 1969 May; 8(10):477-83. PubMed ID: 4240065
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of quinidine on calcium accumulation by isolated sarcoplasmic reticulum of skeletal and cardiac muscle.
    Fuchs F; Gertz EW; Briggs FN
    J Gen Physiol; 1968 Dec; 52(6):955-68. PubMed ID: 4235401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.