These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 4239385)

  • 21. In silico analysis of AHJD-like viruses, Staphylococcus aureus phages S24-1 and S13', and study of phage S24-1 adsorption.
    Uchiyama J; Takemura-Uchiyama I; Kato S; Sato M; Ujihara T; Matsui H; Hanaki H; Daibata M; Matsuzaki S
    Microbiologyopen; 2014 Apr; 3(2):257-70. PubMed ID: 24591378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages ɸSA012 and ɸSA039.
    Azam AH; Hoshiga F; Takeuchi I; Miyanaga K; Tanji Y
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8963-8977. PubMed ID: 30078137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Presence of Two Receptor-Binding Proteins Contributes to the Wide Host Range of Staphylococcal Twort-Like Phages.
    Takeuchi I; Osada K; Azam AH; Asakawa H; Miyanaga K; Tanji Y
    Appl Environ Microbiol; 2016 Oct; 82(19):5763-74. PubMed ID: 27422842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutants of Staphylococcus aureus with increased sensitivity to ultraviolet radiation.
    Goering RV; Pattee PA
    J Bacteriol; 1971 Apr; 106(1):157-61. PubMed ID: 4251664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacteriophage-typable revertants from pleiotropic staphylococcal mutants.
    Korman RZ
    J Bacteriol; 1975 Nov; 124(2):731-5. PubMed ID: 126992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in wall teichoic acid resulting from mutations of Staphylococcus aureus.
    Wolin MJ; Archibald AR; Baddiley J
    Nature; 1966 Jan; 209(5022):484-6. PubMed ID: 5919578
    [No Abstract]   [Full Text] [Related]  

  • 27. Cell wall polymers and phage lysis of Lactobacillus plantarum.
    Douglas LJ; Wolin MJ
    Biochemistry; 1971 Apr; 10(9):1551-5. PubMed ID: 5580669
    [No Abstract]   [Full Text] [Related]  

  • 28. CELL-WALL LYSINS OF STAPHYLOCOCCUS AUREUS STRAINS INDUCED BY SPECIFIC TYPING PHAGES.
    RALSTON DJ; MCIVOR M
    J Bacteriol; 1964 Sep; 88(3):667-75. PubMed ID: 14208505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation of Host Range Expansion of Therapeutic Bacteriophage Sb-1 with Allele State at a Hypervariable Repeat Locus.
    Sergueev KV; Filippov AA; Farlow J; Su W; Kvachadze L; Balarjishvili N; Kutateladze M; Nikolich MP
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492663
    [TBL] [Abstract][Full Text] [Related]  

  • 30. THE INTERRELATIONSHIP BETWEEN MUCOPEPTIDE AND RIBITOL TEICHOIC ACID FORMATION AS SHOWN BY THE EFFECT OF INHIBITORS.
    ROGERS HJ; GARRETT AJ
    Biochem J; 1965 Jul; 96(1):231-43. PubMed ID: 14343137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunochemical analysis of a galactosamine-rich teichoic acid of Staphylococcus aureus, phage type 187.
    Karakawa WW; Kane JA
    J Immunol; 1971 Apr; 106(4):900-6. PubMed ID: 4101777
    [No Abstract]   [Full Text] [Related]  

  • 32. Nature and origins of phosphorus compounds in isolated cell walls of Staphylococcus aureus.
    Mirelman D; Shaw DR; Park JT
    J Bacteriol; 1971 Jul; 107(1):239-44. PubMed ID: 5563871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation of teichoic acid D-alanyl esterification with the expression of methicillin resistance in Staphylococcus aureus.
    O'Brien MJ; Kuhl SA; Starzyk MJ
    Microbios; 1995; 83(335):119-37. PubMed ID: 8538492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The location of the D-alanyl ester in the ribitol teichoic acid of Staphylococcus aureus.
    Mirelman D; Beck BD; Shaw DR
    Biochem Biophys Res Commun; 1970 May; 39(4):712-7. PubMed ID: 4321415
    [No Abstract]   [Full Text] [Related]  

  • 35. The membrane teichoic acid of Staphylococcus lactis I3.
    Archibald AR; Baddiley J; Button D
    Biochem J; 1968 Dec; 110(3):559-63. PubMed ID: 5701687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycosylation of Staphylococcus aureus cell wall teichoic acid is influenced by environmental conditions.
    Mistretta N; Brossaud M; Telles F; Sanchez V; Talaga P; Rokbi B
    Sci Rep; 2019 Mar; 9(1):3212. PubMed ID: 30824758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silviavirus phage ɸMR003 displays a broad host range against methicillin-resistant Staphylococcus aureus of human origin.
    Peng C; Hanawa T; Azam AH; LeBlanc C; Ung P; Matsuda T; Onishi H; Miyanaga K; Tanji Y
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7751-7765. PubMed ID: 31388727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Chemical studies on the phage receptor of Staphylococcus epidermidis (author's transl)].
    Schleifer KH; Steber J
    Arch Microbiol; 1974 Jul; 98(3):251-70. PubMed ID: 4276996
    [No Abstract]   [Full Text] [Related]  

  • 39. Studies on the chemistry and immunochemistry of cell walls of Staphylococcus aureus.
    MORSE SI
    J Exp Med; 1962 Aug; 116(2):229-45. PubMed ID: 14476345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Ability of Lytic Staphylococcal Podovirus vB_SauP_phiAGO1.3 to Coexist in Equilibrium With Its Host Facilitates the Selection of Host Mutants of Attenuated Virulence but Does Not Preclude the Phage Antistaphylococcal Activity in a Nematode Infection Model.
    Głowacka-Rutkowska A; Gozdek A; Empel J; Gawor J; Żuchniewicz K; Kozińska A; Dębski J; Gromadka R; Łobocka M
    Front Microbiol; 2018; 9():3227. PubMed ID: 30713528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.