BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 4239545)

  • 1. Cold resistance of Na- K-ATPase of renal cortex of the hamster, a hibernating mammal.
    Willis JS; Ma Li N
    Am J Physiol; 1969 Jul; 217(1):321-6. PubMed ID: 4239545
    [No Abstract]   [Full Text] [Related]  

  • 2. Increase of Na-K-ATPase activity in renal cortex of hamster (Mesocricetus auratus) during pre-hibernation cold exposure.
    Fang LS; Willis JS
    Comp Biochem Physiol A Comp Physiol; 1974 Aug; 48(4):687-98. PubMed ID: 4152111
    [No Abstract]   [Full Text] [Related]  

  • 3. Cold resistance of the brain during hibernation. II. Na-K-activated ATPase.
    Goldman SS; Willis JS
    Cryobiology; 1973 Aug; 10(3):218-24. PubMed ID: 4270575
    [No Abstract]   [Full Text] [Related]  

  • 4. A cycle for ouabain inhibition of sodium- and potassium-dependent adenosine triphosphatase.
    Sen AK; Tobin T
    J Biol Chem; 1969 Dec; 244(24):6596-604. PubMed ID: 4243425
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of temperature on the pH dependence of renal microsomal ATPase in the rabbit, rat and hamster.
    Park YS; Goldinger JM; Sambor D; Hong SK
    Comp Biochem Physiol A Comp Physiol; 1983; 76(1):55-61. PubMed ID: 6138186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na-K-ATPase in sodium transport by the perfused rat kidney.
    Ross B; Leaf A; Silva P; Epstein FH
    Am J Physiol; 1974 Mar; 226(3):624-9. PubMed ID: 4274081
    [No Abstract]   [Full Text] [Related]  

  • 7. Na+- K+-activated ATPase anc exocrine pancreatic secretion in vitro.
    Ridderstap AS; Bonting SL
    Am J Physiol; 1969 Dec; 217(6):1721-7. PubMed ID: 4242846
    [No Abstract]   [Full Text] [Related]  

  • 8. The ouabain inhibition of sugar transport in kidney cortex cells.
    Almendares JA; Kleinzeller A
    Arch Biochem Biophys; 1971 Aug; 145(2):511-9. PubMed ID: 4256589
    [No Abstract]   [Full Text] [Related]  

  • 9. Renal sodium- and potassium-activated adenosine triphosphatase and sodium reabsorption in the hypothyroid rat.
    Katz AI; Lindheimer MD
    J Clin Invest; 1973 Apr; 52(4):796-804. PubMed ID: 4348343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of the (Na + -K + )-ATPase from pleopods of Sphaeroma serratum (Fabricius).
    Philippot J; Thuet M; Thuet P
    Comp Biochem Physiol B; 1972 Jan; 41(1):231-43. PubMed ID: 4263052
    [No Abstract]   [Full Text] [Related]  

  • 11. Reconstitution of active transport by kidney and brain (Na+ + K+)-ATPase.
    Goldin SM; Sweadner KJ
    Ann N Y Acad Sci; 1975 Dec; 264():387-97. PubMed ID: 130820
    [No Abstract]   [Full Text] [Related]  

  • 12. Cold resistance of kidney cells of mammalian hibernators: cation transport vs. respiration.
    Willis JS
    Am J Physiol; 1968 Apr; 214(4):923-8. PubMed ID: 5642958
    [No Abstract]   [Full Text] [Related]  

  • 13. The role of aldosterone in the regulation of (Na + + K + )-ATPase in rat kidney.
    Jorgensen PL
    J Steroid Biochem; 1972 Feb; 3(2):181-91. PubMed ID: 4265529
    [No Abstract]   [Full Text] [Related]  

  • 14. Ouabain-sensitive Mg++-ATPase, K+-ATPase and Na+-ATPase activities accompanying a highly specific Na+-K+-ATPase preparation.
    Fujita M; Nagano K; Mizuno N; Tashima Y; Nakao T
    J Biochem; 1967 Apr; 61(4):473-7. PubMed ID: 4228963
    [No Abstract]   [Full Text] [Related]  

  • 15. Acid-stable and heat-stable phosphoenzyme complexes of (Na plus K)-ATPase in the eel electric organ, and the related concept of active Na transport.
    Brodsky WA; Sohn RJ
    Ann N Y Acad Sci; 1974; 242(0):106-19. PubMed ID: 4279580
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on (Na+-K+)-activated ATPase. XXI. Changes in (Na+-K+)-activated ATPase activity and ouabain-sensitive 86Rb+ uptake rate in regenerating rat liver.
    Bakkeren JA; Bonting SL
    Biochim Biophys Acta; 1968 Apr; 150(3):467-72. PubMed ID: 4231300
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of Na-K-ATPase in the renal reabsorption of sodium in the elasmobranch, Squalus acanthias.
    Hayslett JP; Jampol LM; Forrest JN; Epstein M; Murdaugh HV; Myers JD
    Comp Biochem Physiol A Comp Physiol; 1973 Feb; 44(2):417-22. PubMed ID: 4145760
    [No Abstract]   [Full Text] [Related]  

  • 18. [Effect of noradrenaline on transport adenosine triphosphatase in the cerebral synaptosomes of Citellus erythrogenus susliks].
    Vysochina TK; Popova NK
    Zh Evol Biokhim Fiziol; 1978; 14(2):171-4. PubMed ID: 148827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultured cells from renal cortex of hibernators and nonhibernators. Regulation of cell K+ at low temperature.
    Zeidler RB; Willis JS
    Biochim Biophys Acta; 1976 Jul; 436(3):628-51. PubMed ID: 986173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium plus potassium-activated, ouabain-inhibited adenosine triphosphatase from a fraction of rat skeletal muscle, and lack of insulin effect on it.
    Rogus E; Price T; Zierler KL
    J Gen Physiol; 1969 Aug; 54(2):188-202. PubMed ID: 4240329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.