BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4240065)

  • 1. Free fatty acids as a factor modifying properties of fragmented sarcoplasmic reticulum during ageing.
    Sarzala MG; Drabikowski W
    Life Sci; 1969 May; 8(10):477-83. PubMed ID: 4240065
    [No Abstract]   [Full Text] [Related]  

  • 2. Potassium-activated adenosinetriphosphatase and calcium uptake by sarcoplasmic reticulum.
    Duggan PF
    Life Sci; 1967 Mar; 6(6):561-7. PubMed ID: 4226765
    [No Abstract]   [Full Text] [Related]  

  • 3. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 3. Ca plus-uptake and ATP-splitting.
    Yamada S; Yamamoto T; Tonomura Y
    J Biochem; 1970 Jun; 67(6):789-94. PubMed ID: 4247349
    [No Abstract]   [Full Text] [Related]  

  • 4. Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport.
    Martonosi A
    J Biol Chem; 1969 Feb; 244(4):613-20. PubMed ID: 4238763
    [No Abstract]   [Full Text] [Related]  

  • 5. Sarcoplasmic reticulum. 3. The role of phospholipids in the adenosine triphosphatase activity and Ca++ transport.
    Martonosi A; Donley J; Halpin RA
    J Biol Chem; 1968 Jan; 243(1):61-70. PubMed ID: 4229832
    [No Abstract]   [Full Text] [Related]  

  • 6. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

  • 7. Binding of enzymes of glycogen metabolism to glycogen in skeletal muscle.
    DiMauro S; Trojaborg W; Gambetti P; Rowland LP
    Arch Biochem Biophys; 1971 May; 144(1):413-22. PubMed ID: 4256090
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of diethyl ether on the adenosine triphosphatase activity and the calcium uptake of fragmented sarcoplasmic reticulum of rabbit skeletal muscle.
    Inesi G; Goodman JJ; Watanabe S
    J Biol Chem; 1967 Oct; 242(20):4637-43. PubMed ID: 4228829
    [No Abstract]   [Full Text] [Related]  

  • 9. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies.
    Yamamoto T; Tonomura Y
    J Biochem; 1967 Nov; 62(5):558-75. PubMed ID: 4231496
    [No Abstract]   [Full Text] [Related]  

  • 10. Ca++ uptake in muscle microsomes. Activation by polyamines.
    De Meis L
    J Biol Chem; 1968 Mar; 243(6):1174-9. PubMed ID: 4230814
    [No Abstract]   [Full Text] [Related]  

  • 11. Developmental changes in the composition and function of sarcoplasmic reticulum.
    Boland R; Martonosi A; Tillack TW
    J Biol Chem; 1974 Jan; 249(2):612-23. PubMed ID: 4272123
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of alkaline cations on ATPase activity and Ca 2+ uptake of skeletal muscle microsomes.
    Costa MJ; Perret M; De Meis L
    An Acad Bras Cienc; 1970 Jun; 42(2):269-74. PubMed ID: 4258109
    [No Abstract]   [Full Text] [Related]  

  • 13. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Intermediate formation of phosphoryl protein.
    Yamamoto T; Tonomura Y
    J Biochem; 1968 Aug; 64(2):137-45. PubMed ID: 4236838
    [No Abstract]   [Full Text] [Related]  

  • 14. Calcium transport by rabbit skeletal muscle microsomes ("fragmented sarcoplasmic reticulum").
    Katz AM; Repke DI
    Biochim Biophys Acta; 1973 Mar; 298(2):270-8. PubMed ID: 4719132
    [No Abstract]   [Full Text] [Related]  

  • 15. Ultrastructure and calcium transport in dystrophic chicken muscle microsomes.
    Baskin RJ
    Lab Invest; 1970 Dec; 23(6):581-9. PubMed ID: 4098605
    [No Abstract]   [Full Text] [Related]  

  • 16. Calcium binding properties of sarcoplasmic reticulum membranes.
    Cohen A; Selinger Z
    Biochim Biophys Acta; 1969 Jun; 183(1):27-35. PubMed ID: 4307352
    [No Abstract]   [Full Text] [Related]  

  • 17. Lanthanide inhibition of calcium binding by muscle microsomes: ATP and time dependency.
    Krasnow N
    J Mol Cell Cardiol; 1978 Jan; 10(1):55-66. PubMed ID: 146095
    [No Abstract]   [Full Text] [Related]  

  • 18. Sarcoplasmic reticulum. XI. The mode of involvement of phospholipids in the hydrolysis of ATP by sarcoplasmic reticulum membranes.
    Martonosi A; Donley JR; Pucell AG; Halpin RA
    Arch Biochem Biophys; 1971 Jun; 144(2):529-40. PubMed ID: 4328159
    [No Abstract]   [Full Text] [Related]  

  • 19. [Calcium transport and ATPase activity of mitochondria and sarcoplasmic reticulum fragments of rabbit heart and muscle in hypercholesteremia].
    Chernysheva GV; Stoĭda LV; Kuz'mina IL
    Biull Eksp Biol Med; 1980 Mar; 89(3):292-4. PubMed ID: 6446328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some properties of fragmented frog sarcoplasmic reticulum with particular reference to its response to caffeine.
    Ogawa Y
    J Biochem; 1970 May; 67(5):667-83. PubMed ID: 4248153
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.