BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 4240096)

  • 1. Role of magnesium, phosphate and ATP in the regulation of calcium uptake by rat-liver mitochondria.
    Haugaard N; Haugaard ES; Lee NH
    Proc K Ned Akad Wet C; 1969; 72(1):1-15. PubMed ID: 4240096
    [No Abstract]   [Full Text] [Related]  

  • 2. [Gradient of anions in rat liver mitochondria in presence of inhibitors of the respiratory chain and oligomycin].
    Quagliariello E; Palmieri F
    Boll Soc Ital Biol Sper; 1968 Jun; 44(11):925-9. PubMed ID: 5693841
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of Na+ and K+ on mitochondrial respiratory control, oxygen uptake, and adenosine triphosphatase activity.
    Gómez-Puyou A; Sandoval F; Peña A; Chávez E; Tuena M
    J Biol Chem; 1969 Oct; 244(19):5339-45. PubMed ID: 4241978
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of exogenous adenosine triphosphate on the extrusion and retention of ion in the kidney cortex mitochondria.
    Gemba M; Yamamoto K; Ueda J
    Jpn J Pharmacol; 1969 Dec; 19(4):485-93. PubMed ID: 5308397
    [No Abstract]   [Full Text] [Related]  

  • 5. [Dependence of Ca2+ transport in different tissue preparations on addition of inorganic phosphate].
    Kondrashova MN; Babaian GV; Kaminskiĭ IuG
    Ukr Biokhim Zh; 1971; 43(1):105-9. PubMed ID: 4326564
    [No Abstract]   [Full Text] [Related]  

  • 6. The role of mitochondria in modifying the cellular ionic environment: studies of the kinetic accumulation of calcium by rat liver mitochondria.
    Spencer T; Bygrave FL
    J Bioenerg; 1973 Apr; 4(3):347-62. PubMed ID: 4741658
    [No Abstract]   [Full Text] [Related]  

  • 7. [Active transport of calcium in thymocytes].
    Jodin C; Landry Y
    C R Seances Soc Biol Fil; 1975; 169(5):1315-9. PubMed ID: 131632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-dependent Ca uptake of brain microsomes.
    Otsuki I
    J Biochem; 1969 Nov; 66(5):645-50. PubMed ID: 4243336
    [No Abstract]   [Full Text] [Related]  

  • 9. Aspects of mitochondrial function in calcium movement and calcification.
    Schraer R; Elder JA; Schraer H
    Fed Proc; 1973 Sep; 32(9):1938-43. PubMed ID: 4725902
    [No Abstract]   [Full Text] [Related]  

  • 10. Tri-Calciphor (16,16-dimethyl-15-dehydroprostaglandin B1 trimer)-mediated mitochondrial Ca2+ movements: modulation by phosphate.
    Uribe S; Devlin TM
    Biochim Biophys Acta; 1994 Jan; 1225(2):144-8. PubMed ID: 7904184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeability transition in rat liver mitochondria is modulated by the ATP-Mg/Pi carrier.
    Hagen T; Lagace CJ; Modica-Napolitano JS; Aprille JR
    Am J Physiol Gastrointest Liver Physiol; 2003 Aug; 285(2):G274-81. PubMed ID: 12851217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Calcium and magnesium content of liver mitochondria in normal and regenerated liver of the rat].
    Leoni S; Magiantini MT; Spagnuolo S
    Boll Soc Ital Biol Sper; 1973 May; 49(10):545-9. PubMed ID: 4788775
    [No Abstract]   [Full Text] [Related]  

  • 13. The mechanism of ion translocation in mitochondria. 4. Coupling of K+ efflux with Ca2+ uptake.
    Scarpa A; Azzone GF
    Eur J Biochem; 1970 Feb; 12(2):328-35. PubMed ID: 5459571
    [No Abstract]   [Full Text] [Related]  

  • 14. The role of adenosine triphosphate and adenosine triphosphatase in the release of catecholamines from the adrenal medulla. IV. Adenosine triphosphate-- activated uptake of calcium by microsomes and mitochondria.
    Poisner AM; Hava M
    Mol Pharmacol; 1970 Jul; 6(4):407-15. PubMed ID: 4246825
    [No Abstract]   [Full Text] [Related]  

  • 15. Evidence for two compartments of exchangeable calcium in isolated rat liver mitochondria obtained using a 45Ca exchange technique in the presence of magnesium, phosphate, and ATPase at 37 degrees C.
    Barritt GJ
    J Membr Biol; 1981; 62(1-2):53-63. PubMed ID: 6168763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention of Ca2+ by rat liver and rat heart mitochondria: effect of phosphate, Mg2+, and NAD(P) redox state.
    Coelho JL; Vercesi AE
    Arch Biochem Biophys; 1980 Oct; 204(1):141-7. PubMed ID: 7425633
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolic-independent volume changes and Mg++ binding in mitochondria isolated from AH-130 Yoshida ascites hepatoma.
    Feo F; Matlí A
    Cancer Res; 1970 Aug; 30(8):2223-30. PubMed ID: 4318923
    [No Abstract]   [Full Text] [Related]  

  • 18. The effects of phosphate and electron transport on the carbonyl cyanide m-chlorophenylhydrazone-induced ATPase of rat-liver mitochondria.
    Bertina RM; Slater EC
    Biochim Biophys Acta; 1975 Mar; 376(3):492-504. PubMed ID: 123770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the formation of acetoacetate by rat-liver mitochondria.
    Drahota Z; Honová E
    Acta Biochim Pol; 1968; 15(2):227-34. PubMed ID: 5658078
    [No Abstract]   [Full Text] [Related]  

  • 20. Quantitative magnetic resonance studies of manganese uptake by mitochondria.
    Gunter RE; Puskin JS; Russell PR
    Biophys J; 1975 Apr; 15(4):319-33. PubMed ID: 236048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.