These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 424080)

  • 1. Some problems of the developmen and aging of nervous system. I. Spinal cord in the 2nd half of fetal life and early infancy.
    Rafałowska J
    Neuropatol Pol; 1979; 17(1):39-53. PubMed ID: 424080
    [No Abstract]   [Full Text] [Related]  

  • 2. Some problems of the development and aging of nervous system. II. Myelination of spinal roots in the 2nd half of fetal life and in early infancy.
    Rafałowska J
    Neuropatol Pol; 1979; 17(3):407-20. PubMed ID: 503315
    [No Abstract]   [Full Text] [Related]  

  • 3. Some problems of the development and aging of nervous system. III. The motor cell of the anterior horn of spinal cord in various periods of life.
    Rafałowska J
    Neuropatol Pol; 1980; 18(1):83-96. PubMed ID: 7383352
    [No Abstract]   [Full Text] [Related]  

  • 4. Displaceable somatostatin binding sites in the gray matter and pyramidal paths of the human developing spinal cord.
    Charnay Y; Leroux P; Epelbaum J; Enjalbert A; Vaudry H; Dubois PM
    Neurosci Lett; 1988 Feb; 84(3):245-50. PubMed ID: 2895438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electron microscopic study of myelination of pyramidal fibres at the level of the pyramidal decussation in the human fetus.
    Wózniak W; O'Rahilly R
    J Hirnforsch; 1982; 23(3):331-42. PubMed ID: 7130683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development and maturation of the pyramidal tract].
    Kubis N; Catala M
    Neurochirurgie; 2003 May; 49(2-3 Pt 2):145-53. PubMed ID: 12746689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system.
    Sundaresan V; Mambetisaeva E; Andrews W; Annan A; Knöll B; Tear G; Bannister L
    J Comp Neurol; 2004 Jan; 468(4):467-81. PubMed ID: 14689480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L1 CAM expression is increased surrounding the lesion site in rats with complete spinal cord transection as neonates.
    Kubasak MD; Hedlund E; Roy RR; Carpenter EM; Edgerton VR; Phelps PE
    Exp Neurol; 2005 Aug; 194(2):363-75. PubMed ID: 16022864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [At what age does human supraspinal control over caudal spinal cord segments mature?].
    Starobinets MKh; Volkova LD
    Fiziol Cheloveka; 1984; 10(6):965-71. PubMed ID: 6526195
    [No Abstract]   [Full Text] [Related]  

  • 10. Calibre spectra of some fibre tracts in the feline central nervous system during postnatal development.
    Hildebrand C; Skoglund S
    Acta Physiol Scand Suppl; 1971; 364():5-41. PubMed ID: 4109395
    [No Abstract]   [Full Text] [Related]  

  • 11. Quantitative evaluation of glial cells in the white matter of the human spinal cord during its ontogenetic development.
    Malínská J; Malínský J
    Act Nerv Super (Praha); 1973 Mar; 15(1):31-2. PubMed ID: 4735394
    [No Abstract]   [Full Text] [Related]  

  • 12. The structure and connections of the developing inferior olivary nucleus of the rhesus monkey (Macaca mulatta).
    Robertson LT; Stoler WA
    J Comp Neurol; 1974 Nov; 158(2):167-90. PubMed ID: 4436452
    [No Abstract]   [Full Text] [Related]  

  • 13. Transplantation of labeled fetal spinal cord fragments into juvenile myelin-deficient rat spinal cord.
    Hasegawa M; Rosenbluth J
    Anat Rec; 1991 Jan; 229(1):138-43. PubMed ID: 1996780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytokeratin expression in human spinal meninges and ependymal cells.
    Kasper M; Perry G; Stosiek P
    J Hirnforsch; 1991; 32(1):19-25. PubMed ID: 1725782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The postnatal development of the tract of Lissauer in the rat.
    Chung K; Coggeshall RE
    J Comp Neurol; 1984 Nov; 229(4):471-5. PubMed ID: 6501609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury.
    Zhou L; Shine HD
    J Neurosci Res; 2003 Oct; 74(2):221-6. PubMed ID: 14515351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outgrowth of the pyramidal tract in the rat cervical spinal cord: growth cone ultrastructure and guidance.
    Gorgels TG
    J Comp Neurol; 1991 Apr; 306(1):95-116. PubMed ID: 2040732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allometric growth of the spinal cord in relation to the vertebral column during prenatal and postnatal life in the sheep (Ovis aries).
    Ghazi SR; Gholami S
    J Anat; 1994 Oct; 185 ( Pt 2)(Pt 2):427-31. PubMed ID: 7961149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the pyramidal tract in the hamster. I. A light microscopic study.
    Reh T; Kalil K
    J Comp Neurol; 1981 Jul; 200(1):55-67. PubMed ID: 7251945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The pathomorphology of cerebral lesions in bilirubin encephalopathy of the newborn].
    Gurevich PS
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1973; 73(7):1025-32. PubMed ID: 4798248
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.