BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 424305)

  • 1. A correlation between nucleosome spacer region susceptibility to DNase I and histone acetylation.
    Nelson D; Perry ME; Chalkley R
    Nucleic Acids Res; 1979 Feb; 6(2):561-74. PubMed ID: 424305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segregation of rapidly acetylated histones into a chromatin fraction released from intact nuclei by the action of micrococcal nuclease.
    Nelson D; Covault J; Chalkley R
    Nucleic Acids Res; 1980 Apr; 8(8):1745-63. PubMed ID: 7433128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Location of the primary sites of micrococcal nuclease cleavage on the nucleosome core.
    Cockell M; Rhodes D; Klug A
    J Mol Biol; 1983 Oct; 170(2):423-46. PubMed ID: 6631965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of histone hyperacetylation on the nuclease sensitivity and the solubility of chromatin.
    Perry M; Chalkley R
    J Biol Chem; 1981 Apr; 256(7):3313-8. PubMed ID: 6259161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective association of the trout-specific H6 protein with chromatin regions susceptible to DNase I and DNase II: possible location of HMG-T in the spacer region between core nucleosomes.
    Levy W B; Wong NC; Dixon GH
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2810-4. PubMed ID: 268631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNase I site mapping and micrococcal nuclease digestion of pachytene chromatin reveal novel structural features.
    Rao BJ; Rao MR
    J Biol Chem; 1987 Apr; 262(10):4472-6. PubMed ID: 3558350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractionation of nucleosomes by salt elution from micrococcal nuclease-digested nuclei.
    Sanders MM
    J Cell Biol; 1978 Oct; 79(1):97-109. PubMed ID: 701381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closely spaced nucleosome cores in reconstituted histone.DNA complexes and histone-H1-depleted chromatin.
    Steinmetz M; Streeck RE; Zachau HG
    Eur J Biochem; 1978 Feb; 83(2):615-28. PubMed ID: 631138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of single and closely spaced nucleosome core particles.
    Noll M; Zimmer S; Engel A; Dubochet J
    Nucleic Acids Res; 1980 Jan; 8(1):21-42. PubMed ID: 7355128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of nucleosomes and organization of internucleosomal DNA in chromatin.
    Bavykin SG; Usachenko SI; Zalensky AO; Mirzabekov AD
    J Mol Biol; 1990 Apr; 212(3):495-511. PubMed ID: 2325131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of nucleosome core particles containing uH2A (A24).
    Kleinschmidt AM; Martinson HG
    Nucleic Acids Res; 1981 Jun; 9(11):2423-31. PubMed ID: 6269048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of histone acetylation on structure and in vitro transcription of chromatin.
    Mathis DJ; Oudet P; Wasylyk B; Chambon P
    Nucleic Acids Res; 1978 Oct; 5(10):3523-47. PubMed ID: 724494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity of chromatin subunits in vitro and location of histone H1.
    Varshavsky AJ; Bakayev VV; Georgiev GP
    Nucleic Acids Res; 1976 Feb; 3(2):477-92. PubMed ID: 1257057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone accessibility determined by lysine-specific acetylation in chicken erythrocyte nuclei.
    Lewis PN; Guillemette JG; Chan S
    Eur J Biochem; 1988 Feb; 172(1):135-45. PubMed ID: 3126068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a spacerless dinucleosome from H1-deleted chromatin.
    Klevan L; Crothers DM
    Nucleic Acids Res; 1977 Dec; 4(12):4077-89. PubMed ID: 600791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in chromatin structure at the replication fork. DNase I and trypsin-micrococcal nuclease effects on approximately 300- and 150-base pair nascent DNAs.
    Galili G; Levy A; Jakob KM
    J Biol Chem; 1983 Sep; 258(18):11274-9. PubMed ID: 6224796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digestion of insect chromatin with micrococcal nuclease, DNase I and DNase I combined with single-strand specific nuclease S1.
    Schmidt ER
    Nucleic Acids Res; 1977 Jul; 4(7):2169-80. PubMed ID: 909768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone acetylation increases the solubility of chromatin and occurs sequentially over most of the chromatin. A novel model for the biological role of histone acetylation.
    Perry M; Chalkley R
    J Biol Chem; 1982 Jul; 257(13):7336-47. PubMed ID: 7085629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution of histone H1 subfractions in chromatin subunits.
    Gorka C; Lawrence JJ
    Nucleic Acids Res; 1979 Sep; 7(2):347-59. PubMed ID: 493149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleosomes associated with newly replicated DNA have an altered conformation.
    Seale RL
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2717-21. PubMed ID: 275840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.