These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 4243577)

  • 1. Calcium and adenosine triphosphate binding to renal membranes.
    Palmer RF; Posey VA
    J Gen Physiol; 1970 Jan; 55(1):89-103. PubMed ID: 4243577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetyl phosphate as a substitute for ATP in (Na + + K + )-dependent ATPase.
    Bond GH; Bader H; Post RL
    Biochim Biophys Acta; 1971 Jul; 241(1):57-67. PubMed ID: 4256593
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of potassium on sodium-dependent adenosine diphosphate-adenosine triphosphate exchange activity in kidney microsomes.
    Banerjee SP; Wong SM
    J Biol Chem; 1972 Sep; 247(17):5409-13. PubMed ID: 4262451
    [No Abstract]   [Full Text] [Related]  

  • 4. ATP-dependent Ca uptake of brain microsomes.
    Otsuki I
    J Biochem; 1969 Nov; 66(5):645-50. PubMed ID: 4243336
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of sodium- and potassium-dependent adenosine triphosphatase by N-ethylmaleimide. I. Effects on sodium-sensitive phosphorylation and potassium-sensitive dephosphorylation.
    Banerjee SP; Wong SM; Khanna VK; Sen AK
    Mol Pharmacol; 1972 Jan; 8(1):8-17. PubMed ID: 4258649
    [No Abstract]   [Full Text] [Related]  

  • 6. Functions of the E-atp and E-P complexes in the membrane ATPase reaction.
    Shamoo AE; Brodsky WA
    Biochim Biophys Acta; 1972 Jan; 255(1):220-30. PubMed ID: 4258774
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of sodium- and potassium-dependent adenosine triphosphatase by N-ethylmaleimide. II. Effects of sodium-activated transphosphorylation.
    Banerjee SP; Wong SM; Sen AK
    Mol Pharmacol; 1972 Jan; 8(1):18-29. PubMed ID: 4258646
    [No Abstract]   [Full Text] [Related]  

  • 8. Adenosine triphosphate--dependent calcium uptake by rat submaxillary gland microsomes.
    Alonso GL; Bazerque PM; Arrigó DM; Tumilasci OR
    J Gen Physiol; 1971 Sep; 58(3):340-50. PubMed ID: 4255373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex.
    Goldfarb PS; Rodnight R
    Biochem J; 1970 Nov; 120(1):15-24. PubMed ID: 4250237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis.
    Blostein R
    J Biol Chem; 1968 Apr; 243(8):1957-65. PubMed ID: 4230833
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of cations, g-strophanthin and oligomycin on the labeling from [32P] ATP of the (Na+ + K+)-activated enzyme system and the effect of cations and g-strophanthin on the labeling from [32P] ITP and 32Pi.
    Skou JC; Hilberg C
    Biochim Biophys Acta; 1969 Jul; 185(1):198-219. PubMed ID: 4240323
    [No Abstract]   [Full Text] [Related]  

  • 12. Calcium binding of isolated synaptic membranes from rat cerebral cortex.
    Saito K; Uchida S; Yoshida H
    Jpn J Pharmacol; 1972 Dec; 22(6):787-98. PubMed ID: 4268595
    [No Abstract]   [Full Text] [Related]  

  • 13. Sarcoplasmic reticulum. XIV. Acetylphosphate and carbamylphosphate as energy sources for Ca++ transport.
    Pucell A; Martonosi A
    J Biol Chem; 1971 May; 246(10):3389-97. PubMed ID: 4324900
    [No Abstract]   [Full Text] [Related]  

  • 14. Calcium binding properties of sarcoplasmic reticulum membranes.
    Cohen A; Selinger Z
    Biochim Biophys Acta; 1969 Jun; 183(1):27-35. PubMed ID: 4307352
    [No Abstract]   [Full Text] [Related]  

  • 15. THE ACCUMULATION OF CALCIUM IONS BY SARCOTUBULAR VESICLES.
    CARSTEN ME; MOMMAERTS WF
    J Gen Physiol; 1964 Nov; 48(2):183-97. PubMed ID: 14225254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microdetermination of phosphorylated intermediates of sodium-potassium adenosine triphosphatase.
    Phang JM; Weiss IW
    Anal Biochem; 1972 Apr; 46(2):453-60. PubMed ID: 4260168
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of angiotensin, catecholamines and cyclic AMP on calcium storage in aortic microsomes.
    Baudouin-Legros M; Meyer P
    Br J Pharmacol; 1973 Feb; 47(2):377-85. PubMed ID: 4352869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-dependent Ca uptake by subcellular fractions of uterine smooth muscle.
    Batra SC; Daniel EE
    Comp Biochem Physiol A Comp Physiol; 1971 Feb; 38(2):369-85. PubMed ID: 4397610
    [No Abstract]   [Full Text] [Related]  

  • 19. Properties of an ATP-binding protein isolated from membranes of nerve endings.
    Abood LG; Matsubara A
    Biochim Biophys Acta; 1968 Dec; 163(4):539-49. PubMed ID: 4235865
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of phospholipids in the ATP-ase activity of skeletal muscle microsomes.
    Martonosi A
    Biochem Biophys Res Commun; 1967 Dec; 29(5):753-7. PubMed ID: 4229608
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.