These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 4244466)
1. Kinetics of monovalent ion activation of the (Na+ K+)-dependent adenosine triphosphatase and a model for ion translocation and its inhibition by the cardiac glycosides. Middleton HW Arch Biochem Biophys; 1970 Jan; 136(1):280-6. PubMed ID: 4244466 [No Abstract] [Full Text] [Related]
2. Structue-activity relationships of cardiotonic steroids for the inhibition of sodium- and potassium-dependent adenosine triphosphatase. I. Dissociation rate constants of various enzyme-cardiac glycoside complexes formed in the presence of magnesium and phosphate. Yoda A Mol Pharmacol; 1973 Jan; 9(1):51-60. PubMed ID: 4265446 [No Abstract] [Full Text] [Related]
3. The titration of the cardiac glycoside binding site of the (Na+ + K+)-adenosine triphosphatase. Kyte J J Biol Chem; 1972 Dec; 247(23):7634-41. PubMed ID: 4264132 [No Abstract] [Full Text] [Related]
4. Effect of monovalent cations on the ouabain iniibition of the sodium and potassium ion activated adenosine triphosphatase. Barnett RE Biochemistry; 1970 Nov; 9(24):4644-8. PubMed ID: 4249365 [No Abstract] [Full Text] [Related]
5. Structure-activity relationships of cardiotonic steroids for the inhibition of sodium- and potassium-dependent adenosine triphosphatase. 3. Dissociation rate constants of various enzyme-cardiac glycoside complexes formed in the presence of sodium, magnesium, and adenosine triphosphate. Yoda A; Yoda S Mol Pharmacol; 1974 May; 10(3):494-500. PubMed ID: 4277671 [No Abstract] [Full Text] [Related]
6. Interactions between monovalent cations and the (Na+ + K+)-dependent adenosine triphosphatase. Robinson JD Arch Biochem Biophys; 1970 Jul; 139(1):17-27. PubMed ID: 4319460 [No Abstract] [Full Text] [Related]
7. Inhibition of sodium- and potassium-dependent adenosine triphosphatase by ethacrynic acid: ligand-induced modifications. Banerjee SP; Khanna VK; Sen AK Biochem Pharmacol; 1971 Jul; 20(7):1649-60. PubMed ID: 4270365 [No Abstract] [Full Text] [Related]
8. Stability and ligand sensitivity of (3H)ouabain binding to (Na+ + K+)ATPase. Tobin T; Sen AK Biochim Biophys Acta; 1970 Jan; 198(1):120-31. PubMed ID: 4244238 [No Abstract] [Full Text] [Related]
9. Kinetic studies on a brain microsomal adenosine triphosphatase. II. Potassium-dependent phosphatase activity. Robinson JD Biochemistry; 1969 Aug; 8(8):3348-55. PubMed ID: 4241304 [No Abstract] [Full Text] [Related]
10. Magnetic resonance and kinetic studies of the mechanism of sodium and potassium ion-activated adenosine triphosphatase. Grisham CM; Mildvan AS J Biol Chem; 1974 May; 249(10):3187-97. PubMed ID: 4364418 [No Abstract] [Full Text] [Related]
11. Structure-activity relationships of cardiotonic steroids for the inhibition of sodium- and potassium-dependent adenosine triphosphatase. II. Association rate constants of various enzyme-cardiac glycoside complexes. Yoda A; Yoda S; Sarrif AM Mol Pharmacol; 1973 Nov; 9(6):766-73. PubMed ID: 4271632 [No Abstract] [Full Text] [Related]
12. A kinetic description for sodium and potassium effects on (Na+ plus K+)-adenosine triphosphatase: a model for a two-nonequivalent site potassium activation and an analysis of multiequivalent site models for sodium activation. Lindenmayer GE; Schwartz A; Thompson HK J Physiol; 1974 Jan; 236(1):1-28. PubMed ID: 4274214 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of adenosine triphosphate-inorganic phosphate exchange and adenosine triphosphatase activity by potassium atractylate. VIGNAIS PV; VIGNAIS PM; STANISLAS E Biochim Biophys Acta; 1961 Aug; 51():394-6. PubMed ID: 13925878 [No Abstract] [Full Text] [Related]
14. On the reaction sequence of the K + -dependent acetyl phosphatase activity of the Na + pump. Dudding WF; Winter CG Biochim Biophys Acta; 1971 Aug; 241(2):650-60. PubMed ID: 4334150 [No Abstract] [Full Text] [Related]
15. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. 8. Effects of ligands on fluorescence due to interaction of the enzyme with a fluorescent derivative of hellebrigenin. Yoda A; Hokin LE Mol Pharmacol; 1972 Jan; 8(1):30-40. PubMed ID: 4258647 [No Abstract] [Full Text] [Related]
16. The influence of monovalent cations and Ca2+ on G-strophanthin binding to (Na+ plus K+)-activated ATPase. Hansen O Ann N Y Acad Sci; 1974; 242(0):635-45. PubMed ID: 4279611 [No Abstract] [Full Text] [Related]
17. Comparison of some minor activities accompanying a preparation of sodium-plus-potassium ion-stimulated adenosine triphosphatase from pig brain. Fujita M; Nagano K; Mizuno N; Tashima Y; Nakao T; Nakao M Biochem J; 1968 Jan; 106(1):113-21. PubMed ID: 4238488 [TBL] [Abstract][Full Text] [Related]
18. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase. Grisham CM; Mildvan AS J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521 [TBL] [Abstract][Full Text] [Related]
19. Studies on the characterization of the sodium-potassium transport adenosinetriphosphatase. VII. Comparison of the properties of the membrane-bound and partially purified soluble and insoluble forms of the enzyme. Kline MH; Hexum TD; Dahl JL; Hokin LE Arch Biochem Biophys; 1971 Dec; 147(2):781-7. PubMed ID: 4257601 [No Abstract] [Full Text] [Related]