BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 4245930)

  • 1. A study of the phosphorylated intermediate of sarcoplasmic reticulum ATPase.
    Inesi G; Maring E; Murphy AJ; McFarland BH
    Arch Biochem Biophys; 1970 May; 138(1):285-94. PubMed ID: 4245930
    [No Abstract]   [Full Text] [Related]  

  • 2. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

  • 3. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal mus le. V. Vectorial requirements for calcium and magnesium ions of three partial reactions of ATPase: formation and decomposition of a phosphorylated intermediate and ATP-formation from ADP and the intermediate.
    Kanazawa T; Yamada A; Yamamoto T; Tonomura Y
    J Biochem; 1971 Jul; 70(1):95-123. PubMed ID: 4254539
    [No Abstract]   [Full Text] [Related]  

  • 4. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. IV. Hydroxamate formation from a phosphorylated intermediate and 2-hydroxy-5-nitrobenzyl hydroxylamine.
    Yamamoto T; Yoda A; Tonomura Y
    J Biochem; 1971 Apr; 69(4):807-9. PubMed ID: 4252252
    [No Abstract]   [Full Text] [Related]  

  • 5. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Intermediate formation of phosphoryl protein.
    Yamamoto T; Tonomura Y
    J Biochem; 1968 Aug; 64(2):137-45. PubMed ID: 4236838
    [No Abstract]   [Full Text] [Related]  

  • 6. Reaction mechanism of the Ca 2+ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VI. Co-operative transition of ATPase activity during the initial phase.
    Yamada S; Yamamoto T; Kanazawa T; Tonomura Y
    J Biochem; 1971 Aug; 70(2):279-91. PubMed ID: 4255300
    [No Abstract]   [Full Text] [Related]  

  • 7. The protein composition of sarcoplasmic reticulum membranes.
    Martonosi A
    Biochem Biophys Res Commun; 1969 Sep; 36(6):1039-44. PubMed ID: 4242047
    [No Abstract]   [Full Text] [Related]  

  • 8. Phosphorylated-intermediate of microsomal ATPase from rabbit gastric mucosa.
    Tanisawa AS; Forte JG
    Arch Biochem Biophys; 1971 Nov; 147(1):165-75. PubMed ID: 4329862
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphorylation of solubilized sarcoplasmic reticulum by orthophosphate and its thermodynamic characteristics. The dominant role of entropy in the phosphorylation.
    Kanazawa T
    J Biol Chem; 1975 Jan; 250(1):113-9. PubMed ID: 237882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane formation by the adenosine triphosphatase of sarcoplasmic reticulum.
    MacLennan DH; Seeman P; Iles GH; Yip CC
    J Biol Chem; 1971 Apr; 246(8):2702-10. PubMed ID: 4251854
    [No Abstract]   [Full Text] [Related]  

  • 11. [Structural, cytochemical and enzymatic correlations in the sarcoplasmic reticulum membranes].
    Agostini B; Hasselbach W
    Quad Sclavo Diagn; 1971 Mar; 7(1):406-28. PubMed ID: 4264076
    [No Abstract]   [Full Text] [Related]  

  • 12. Calcium ion and sodium- and potassium-dependent adenosine triphosphatase: its mechanism of inhibition and identification of the E 1 -P intermediate.
    Tobin T; Akera T; Baskin SI; Brody TM
    Mol Pharmacol; 1973 May; 9(3):336-49. PubMed ID: 4267957
    [No Abstract]   [Full Text] [Related]  

  • 13. Occurrence and characteristics of a rapid exchange of phosphate oxygens catalyzed by sarcoplasmic reticulum vesicles.
    Kanazawa T; Boyer PD
    J Biol Chem; 1973 May; 248(9):3163-72. PubMed ID: 4267042
    [No Abstract]   [Full Text] [Related]  

  • 14. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport.
    Makinose M
    Eur J Biochem; 1969 Aug; 10(1):74-82. PubMed ID: 4242109
    [No Abstract]   [Full Text] [Related]  

  • 15. Ionized and bound calcium inside isolated sarcoplasmic reticulum of skeletal muscle and its significance in phosphorylation of adenosine triphosphatase by orthophosphate.
    Prager R; Punzengruber C; Kolassa N; Winkler F; Suko J
    Eur J Biochem; 1979 Jun; 97(1):239-50. PubMed ID: 157875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of calcium-independent phosphorylation of sarcoplasmic reticulum ATPase by orthophosphat. Evidence of magnesium-phosphoprotein formation.
    Kolassa N; Punzengruber C; Suko J; Makinose M
    FEBS Lett; 1979 Dec; 108(2):495-500. PubMed ID: 160338
    [No Abstract]   [Full Text] [Related]  

  • 17. Factors affecting the transient phase of the Ca2+, Mg2+-dependent ATPase reaction of sarcoplasmic reticulum from skeletal muscle.
    Takisawa H; Tonomura Y
    J Biochem; 1978 May; 83(5):1275-84. PubMed ID: 149120
    [No Abstract]   [Full Text] [Related]  

  • 18. Excitation-contraction coupling in heart. I. Comparison of calcium uptake by the sarcoplasmic reticulum and mitochondria of the rat heart.
    Dhalla NS
    Arch Int Physiol Biochim; 1969 Dec; 77(5):916-34. PubMed ID: 4190879
    [No Abstract]   [Full Text] [Related]  

  • 19. Proceedings: Properties of a phosphorylated intermediate of the Ca2+-dependent ATPase and ADP-ATP phosphate exchange of cardiac sarcoplasmic reticulum.
    Suko J; Hasselbach W
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R97. PubMed ID: 4276657
    [No Abstract]   [Full Text] [Related]  

  • 20. A (Na+ K+) ATPase of sarcolemma from skeletal muscle.
    Peter JB
    Biochem Biophys Res Commun; 1970 Sep; 40(6):1362-7. PubMed ID: 4253972
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.