These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 4246367)

  • 1. Role of phosphofructokinase in the utilization of glucose by Escherichia coli.
    Kornberg HL; Smith J
    Nature; 1970 Jul; 227(5253):44-6. PubMed ID: 4246367
    [No Abstract]   [Full Text] [Related]  

  • 2. The dissimilation of glucose and gluconate by Acetobacter xylinum. 1. The origin and the fate of triose phosphate.
    White GA; Wang CH
    Biochem J; 1964 Feb; 90(2):408-23. PubMed ID: 4220768
    [No Abstract]   [Full Text] [Related]  

  • 3. The pattern of utilization of respiratory metabolic intermediates by preimplantation rabbit embryos in vitro.
    Daniel JC
    Exp Cell Res; 1967 Sep; 47(3):619-24. PubMed ID: 6054032
    [No Abstract]   [Full Text] [Related]  

  • 4. Carbohydrate metabolism in Rhodopseudomonas capsulata: enzyme titers, glucose metabolism, and polyglucose polymer synthesis.
    Eidels L; Preiss J
    Arch Biochem Biophys; 1970 Sep; 140(1):75-89. PubMed ID: 4248272
    [No Abstract]   [Full Text] [Related]  

  • 5. Carbohydrate accumulation and metabolism in Escherichia coli. I. Description of pleiotropic mutants.
    Wang RJ; Morse ML
    J Mol Biol; 1968 Feb; 32(1):59-66. PubMed ID: 4868120
    [No Abstract]   [Full Text] [Related]  

  • 6. Suppressor of phosphofructokinase mutations of Escherichia coli.
    Morrissey AT; Fraenkel DG
    J Bacteriol; 1972 Oct; 112(1):183-7. PubMed ID: 4263401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of 1-phosphofructokinase and PEP:fructose phosphotransferase activity in Clostridia.
    von Hugo H; Gottschalk G
    FEBS Lett; 1974 Sep; 46(1):106-8. PubMed ID: 4278943
    [No Abstract]   [Full Text] [Related]  

  • 8. [Glucose and gluconate metabolism in glycolysis and hexosemonophosphate pathway mutants from Escherichia coli].
    Schreyer R; Böck A
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1567. PubMed ID: 4568006
    [No Abstract]   [Full Text] [Related]  

  • 9. [Allosteric properties of phosphofructokinase of E. coli. Study of the ligand binding by equilibrium dialysis].
    Blangy D
    Biochimie; 1971; 53(2):135-44. PubMed ID: 4254254
    [No Abstract]   [Full Text] [Related]  

  • 10. The glucose catabolism of the genus Brucella. II. Cell-free studies with B. abortus (S-19).
    Robertson DC; McCullough WG
    Arch Biochem Biophys; 1968 Sep; 127(1):445-56. PubMed ID: 4235225
    [No Abstract]   [Full Text] [Related]  

  • 11. The accumulation of glucose 6-phosphate from glucose and its effect in an Escherichia coli mutant lacking phosphoglucose isomerase and glucose 6-phosphate dehydrogenase.
    Fraenkel DG
    J Biol Chem; 1968 Dec; 243(24):6451-7. PubMed ID: 4302393
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies on the uptake of hexose phosphates. I. 2-Deoxyglucose and 2-deoxyglucose 6-phosphate.
    Dietz GW; Heppel LA
    J Biol Chem; 1971 May; 246(9):2881-4. PubMed ID: 4928893
    [No Abstract]   [Full Text] [Related]  

  • 13. [Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase].
    Gershanovich VN; Mandzhgaladze DN
    Dokl Akad Nauk SSSR; 1969; 188(1):212-4. PubMed ID: 4920136
    [No Abstract]   [Full Text] [Related]  

  • 14. A simple enzymic determination of the specific 14 C (1) -labelling of 6-phosphogluconate, glucose 6-phosphate, fructose 6-phosphate and glucose.
    Lange K; Keller K; Kolbe H
    Naunyn Schmiedebergs Arch Pharmacol; 1972; 272(4):454-7. PubMed ID: 4260267
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli.
    Blangy D; Buc H; Monod J
    J Mol Biol; 1968 Jan; 31(1):13-35. PubMed ID: 4229913
    [No Abstract]   [Full Text] [Related]  

  • 16. [On the role of carbohydrate mechanisms in the regulation of accumulation and storage of fructosediphosphate in Escherichia coli].
    Gershanovich VN; Iurovitskaia NV; Kliucheva VV
    Biokhimiia; 1968; 33(3):576-82. PubMed ID: 4234233
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on the uptake of hexose phosphates. II. The induction of the glucose 6-phosphate transport system by exogenous but not by endogenously formed glucose 6-phosphate.
    Dietz GW; Heppel LA
    J Biol Chem; 1971 May; 246(9):2885-90. PubMed ID: 4928894
    [No Abstract]   [Full Text] [Related]  

  • 18. Different pathways for fructose and glucose utilization in Rhodopseudomonas capsulata and demonstration of 1-phosphofructokinase in phototrophic bacteria.
    Conrad R; Schlegel HG
    Biochim Biophys Acta; 1974 Jul; 358(1):221-5. PubMed ID: 4277436
    [No Abstract]   [Full Text] [Related]  

  • 19. Glycolytic intermediates and adenosine phosphates in rat liver at high altitude (3,800 m).
    Cipriano LF; Pace N
    Am J Physiol; 1973 Aug; 225(2):393-8. PubMed ID: 4269147
    [No Abstract]   [Full Text] [Related]  

  • 20. Measurement of the activity of the hexose monophosphate pathway of glucose metabolism with the use of [18O]glucose. Variations in its activity in Escherichia coli with growth conditions.
    Model P; Rittenberg D
    Biochemistry; 1967 Jan; 6(1):69-80. PubMed ID: 4382154
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.