These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 4247521)

  • 21. [Oxidation of sulfide minerals by Thiobacillus ferrooxidans].
    Malakhova PT; Chebotarev GM; Kovalenko EV; Volkov IuA
    Mikrobiologiia; 1981; 50(1):147-55. PubMed ID: 7219212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Degradation of sulfur compounds by pure cultures of Thiobacillus].
    Feldmann K; Goroll D
    Z Allg Mikrobiol; 1976; 16(4):255-8. PubMed ID: 785827
    [No Abstract]   [Full Text] [Related]  

  • 23. Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds.
    Fry B; Cox J; Gest H; Hayes JM
    J Bacteriol; 1986 Jan; 165(1):328-30. PubMed ID: 3941049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The role of microorganisms in secondary changes of rocks of Ghaurdahk deposits].
    Pomerants LB; Belenitskaia GA
    Mikrobiologiia; 1969; 38(1):147-51. PubMed ID: 5345726
    [No Abstract]   [Full Text] [Related]  

  • 25. Sulfur bacteria.
    Philos Trans R Soc Lond B Biol Sci; 1982 Sep; 298(1093):429-602. PubMed ID: 6127733
    [No Abstract]   [Full Text] [Related]  

  • 26. [Effect of cultivation conditions on the growth and activities of sulfur metabolism enzymes and carboxylases of Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41].
    Egorova MA; Tsaplina IA; Zakharchuk LM; Bogdanova TI; Krasil'nikova EN
    Prikl Biokhim Mikrobiol; 2004; 40(4):448-54. PubMed ID: 15455718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system.
    Meyer B; Imhoff JF; Kuever J
    Environ Microbiol; 2007 Dec; 9(12):2957-77. PubMed ID: 17991026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of the DsrMKJOP complex for sulfur oxidation in Allochromatium vinosum and phylogenetic analysis of related complexes in other prokaryotes.
    Sander J; Engels-Schwarzlose S; Dahl C
    Arch Microbiol; 2006 Nov; 186(5):357-66. PubMed ID: 16924482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a kinetic model for elemental sulfur and sulfate formation from the autotrophic sulfide oxidation using respirometric techniques.
    Gonzalez-Sanchez A; Tomas M; Dorado AD; Gamisans X; Guisasola A; Lafuente J; Gabriel D
    Water Sci Technol; 2009; 59(7):1323-9. PubMed ID: 19380997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Biological oxidation of sulfide raw material using a culture of Thiobacillus ferrooxidans under various conditions of leaching].
    Fomchenko NV; Slavkina OV; Biriukov VV
    Prikl Biokhim Mikrobiol; 2003; 39(1):92-6. PubMed ID: 12625048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Sulfur and iron cycling bacteria in low-sulfate meromictic Lake Kuznechikha].
    Gorlenko VM; Vainshtein MB; Chebotarev EN
    Mikrobiologiia; 1980; 49(5):804-12. PubMed ID: 6777648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The oxidation of inorganic compounds of sulphur by various sulphur bacteria.
    PARKER CD; PRISK J
    J Gen Microbiol; 1953 Jun; 8(3):344-64. PubMed ID: 13061738
    [No Abstract]   [Full Text] [Related]  

  • 33. Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system.
    Manconi I; Carucci A; Lens P
    Biotechnol Bioeng; 2007 Oct; 98(3):551-60. PubMed ID: 17724757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidation of inorganic sulfur compounds by washed cell suspensions of Thiobacillus ferrooxidans.
    Landesman J; Duncan DW; Walden CC
    Can J Microbiol; 1966 Oct; 12(5):957-64. PubMed ID: 5972649
    [No Abstract]   [Full Text] [Related]  

  • 35. [Physiological properties of the thionic bacteria isolated from Paleogene deposits].
    Tsokur NI; Rozhanskaia AM; Kozlova IA; Andreiuk EI
    Mikrobiol Zh (1978); 1979; 41(1):12-7. PubMed ID: 375037
    [No Abstract]   [Full Text] [Related]  

  • 36. [Rate of iron (Fe 2+) bacterial oxidation at different temperatures and concentrations of Thiobacillus ferrooxidans cells].
    Mikhailova TL; Pestovskikh NV
    Prikl Biokhim Mikrobiol; 1980; 16(4):621-3. PubMed ID: 7220514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Study on bacterial regeneration of ferric sulphate and on steeping of copper from ores].
    Karavaĭko GI; Golomzik AI; Filipenko VS
    Mikrobiologiia; 1966; 35(3):509-16. PubMed ID: 6002912
    [No Abstract]   [Full Text] [Related]  

  • 38. Evidence for the involvement of betaproteobacterial Thiobacilli in the nitrate-dependent oxidation of iron sulfide minerals.
    Haaijer SC; Van der Welle ME; Schmid MC; Lamers LP; Jetten MS; Op den Camp HJ
    FEMS Microbiol Ecol; 2006 Dec; 58(3):439-48. PubMed ID: 17117988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Bacterial leaching of copper from the ores of Kounrad deposits].
    Kamalov MR; Krenes RZ; Ilialetbinov AN
    Mikrobiologiia; 1969; 38(3):505-10. PubMed ID: 4244442
    [No Abstract]   [Full Text] [Related]  

  • 40. Incorporation of radioactive sulphur by Thiobacillus thioparus.
    SKARZYNSKI B; OSTROWSKI W
    Nature; 1958 Oct; 182(4640):933-4. PubMed ID: 13590169
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.