These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 4249186)

  • 1. Specific alkylation of the sarcoplasmic reticulum ATPase by N-ethyl-[1-14C]maleimide and identification of the labeled protein in acrylamide gel-electrophoresis.
    Panet R; Selinger Z
    Eur J Biochem; 1970 Jul; 14(3):440-4. PubMed ID: 4249186
    [No Abstract]   [Full Text] [Related]  

  • 2. Sarcoplasmic reticulum. X. The protein composition of sarcoplasmic reticulum membranes.
    Martonosi A; Halpin RA
    Arch Biochem Biophys; 1971 May; 144(1):66-77. PubMed ID: 4256091
    [No Abstract]   [Full Text] [Related]  

  • 3. Studies on the mechanism of the conversion of coupling factor 1 from chloroplasts to an active adenosine triphosphatase.
    Farron F; Racker E
    Biochemistry; 1970 Sep; 9(19):3829-36. PubMed ID: 4251459
    [No Abstract]   [Full Text] [Related]  

  • 4. Adenosine triphosphate sulfurylase from Penicillium chrysogenum. II. Physical, kinetic, and regulatory properties.
    Tweedie JW; Segel IH
    J Biol Chem; 1971 Apr; 246(8):2438-46. PubMed ID: 5553402
    [No Abstract]   [Full Text] [Related]  

  • 5. Different states of sarcoplasmic reticulum membrane in the presence of acetyl phosphate and adenosine triphosphate.
    Yuthavong Y; Ucchin P; Sari R
    Life Sci; 1977 Sep; 21(5):713-8. PubMed ID: 143582
    [No Abstract]   [Full Text] [Related]  

  • 6. Syncatalytic modification of cytoplasmic aspartate aminotransferase: identification of a peptide containing the modified cysteinyl residue.
    Birchmeier W; Wilson KJ; Christen P
    FEBS Lett; 1972 Oct; 26(1):113-6. PubMed ID: 4636719
    [No Abstract]   [Full Text] [Related]  

  • 7. Reactive sulfhydryl groups of sarcoplasmic reticulum ATPase. III. Identification of cysteine residues whose modification with N-ethylmaleimide leads to loss of the Ca2+-transporting activity.
    Kawakita M; Yamashita T
    J Biochem; 1987 Jul; 102(1):103-9. PubMed ID: 2959656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reactivity of the thiol groups of the adenosine triphosphatase of sarcoplasmic reticulum and their location on tryptic fragments of the molecule.
    Thorley-Lawson DA; Green NM
    Biochem J; 1977 Dec; 167(3):739-48. PubMed ID: 146488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate.
    Yoshida H; Tonomura Y
    J Biochem; 1976 Mar; 79(3):649-54. PubMed ID: 181370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of sulfhydryl groups in the catalytic function of isocitrate dehydrogenase. 3. Effect of N-ethylmaleimide on chemical and physical properties.
    Colman RF; Chu R
    J Biol Chem; 1970 Feb; 245(3):608-15. PubMed ID: 4391692
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies on adenosine triphosphate transphosphorylases. X. Reactivity and anlysis of the sulfhydryl groups of the crystalline adenosine triphosphate-creatine transphosphorylase from calf brain.
    Okabe K; Jacobs HK; Kuby SA
    J Biol Chem; 1970 Dec; 245(24):6498-510. PubMed ID: 5529899
    [No Abstract]   [Full Text] [Related]  

  • 12. Preparation and studies on the characterization of sheep brain glutamine synthetase.
    Ronzio RA; Wilk S; Rowe WB; Meister A
    Biochemistry; 1969 Jun; 8(6):2670-4. PubMed ID: 5799143
    [No Abstract]   [Full Text] [Related]  

  • 13. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

  • 14. DISULFIDE-SULFHYDRYL INTERCHANGE STUDIES ON MYOSIN A.
    STRACHER A
    J Biol Chem; 1964 Apr; 239():1118-21. PubMed ID: 14165917
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on the thionucleotides in transfer ribonucleic acid. Addition of N-ethylmaleimide and formation of mixed disulfides with thiol compounds.
    Carbon J; David H
    Biochemistry; 1968 Nov; 7(11):3851-8. PubMed ID: 4881059
    [No Abstract]   [Full Text] [Related]  

  • 16. The essential thiol group of arginine kinase from Homarus vulgaris muscle studied by difference spectrophotometry and N-ethyl-[1-14C] maleimide labelling.
    Roustan C; Terrossian E der ; Pradel LA
    Eur J Biochem; 1970 Dec; 17(3):467-71. PubMed ID: 5493978
    [No Abstract]   [Full Text] [Related]  

  • 17. Tryptic cleavage of sarcoplasmic reticulum protein.
    Inesi G; Scales D
    Biochemistry; 1974 Jul; 13(16):3298-306. PubMed ID: 4276242
    [No Abstract]   [Full Text] [Related]  

  • 18. Reactive sulfhydryl groups of sarcoplasmic reticulum ATPase. I. Location of a group which is most reactive with N-ethylmaleimide.
    Saito-Nakatsuka K; Yamashita T; Kubota I; Kawakita M
    J Biochem; 1987 Feb; 101(2):365-76. PubMed ID: 2953711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionation of solubilized sarcoplasmic reticulum.
    Ikemoto N; Bhatnager GM; Gergely J
    Biochem Biophys Res Commun; 1971 Sep; 44(6):1510-7. PubMed ID: 4258590
    [No Abstract]   [Full Text] [Related]  

  • 20. Sulfhydryl studies of spinach leaf glyoxylic acid reductase.
    Warren WA; Kohn LD
    J Biol Chem; 1970 Aug; 245(15):3840-9. PubMed ID: 5492952
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.