These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 4250596)

  • 1. Activity and rhythm of ATPases in larvae of the mosquito, Aedes aegypti L.
    Yap HH; Cutkomp LK
    Life Sci II; 1970 Dec; 9(24):1419-25. PubMed ID: 4250596
    [No Abstract]   [Full Text] [Related]  

  • 2. Circadian rhythms in rate of oxygen consumption by larvae of the mosquito, Aedes aegypti (L).
    Yap HH; Cutkomp LK; Halberg F
    Chronobiologia; 1974; 1(1):54-61. PubMed ID: 4459046
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae).
    Koodalingam A; Mullainadhan P; Arumugam M
    Acta Trop; 2011 Apr; 118(1):27-36. PubMed ID: 21251906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of host distributional patterns on parasite transmission: Aedes aegypti larvae and Plagiorchis noblei Cercariae.
    Webber RA; Rau ME; Lewis DJ
    J Parasitol; 1989 Oct; 75(5):810-2. PubMed ID: 2795386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF.
    Borovsky D; Meola SM
    Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transamination of 3-hydroxykynurenine to produce xanthurenic acid: a major branch pathway of tryptophan metabolism in the mosquito, Aedes aegypti, during larval development.
    Li J; Li G
    Insect Biochem Mol Biol; 1997 Oct; 27(10):859-67. PubMed ID: 9474782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aedes aegypti(Linnaeus) larvae from dengue outbreak areas in Selangor showing resistance to pyrethroids but susceptible to organophosphates.
    Leong CS; Vythilingam I; Wong ML; Wan Sulaiman WY; Lau YL
    Acta Trop; 2018 Sep; 185():115-126. PubMed ID: 29758171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digestive enzymes in the excreta of Aedes aegypti larvae.
    Yang YJ; Davies DM
    J Insect Physiol; 1971 Nov; 17(11):2119-23. PubMed ID: 5158358
    [No Abstract]   [Full Text] [Related]  

  • 9. Superoxide dismutase in the anal gills of the mosquito larvae of Aedes aegypti: its inhibition by alpha-terthienyl.
    Nivsarkar M; Kumar GP; Laloraya M; Laloraya MM
    Arch Insect Biochem Physiol; 1991; 16(4):249-55. PubMed ID: 1799676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of cations on chymotrypsin from Aedes aegypti larvae.
    Yang YJ; Davies DM
    J Insect Physiol; 1972 Apr; 18(4):747-55. PubMed ID: 5016958
    [No Abstract]   [Full Text] [Related]  

  • 11. RNA interference-mediated knockdown of 3, 4-dihydroxyphenylacetaldehyde synthase affects larval development and adult survival in the mosquito Aedes aegypti.
    Chen J; Lu HR; Zhang L; Liao CH; Han Q
    Parasit Vectors; 2019 Jun; 12(1):311. PubMed ID: 31234914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of Bacillus thuringiensis var. israelensis (Bti) on detoxification enzyme activity of larvae of Culex pipiens pallens and Aedes aegypti].
    Han GJ; Li CM; Sun J; Liu Q; Zhao S; Qi JH; Xu J
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2015 Aug; 27(4):385-9. PubMed ID: 26767261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of a ribonuclease from Aedes aegypti larvae.
    Fritz MA; Fallon AM
    Comp Biochem Physiol B; 1987; 88(2):595-601. PubMed ID: 3427905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of oxidases in the tolerance of deciduous leaf infusions by Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae).
    Lampman RL; Kim CH; Muturi EJ
    J Med Entomol; 2014 Jan; 51(1):68-75. PubMed ID: 24605455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective inhibitors of digestive enzymes from Aedes aegypti larvae identified by phage display.
    Soares TS; Soares Torquato RJ; Alves Lemos FJ; Tanaka AS
    Insect Biochem Mol Biol; 2013 Jan; 43(1):9-16. PubMed ID: 23142191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos in Venezuela.
    Alvarez LC; Ponce G; Oviedo M; Lopez B; Flores AE
    Pest Manag Sci; 2014 Aug; 70(8):1262-6. PubMed ID: 24282132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of genes encoding trypsin-like enzymes from Aedes aegypti larvae and identification of digestive enzymes.
    Soares TS; Watanabe RM; Lemos FJ; Tanaka AS
    Gene; 2011 Dec; 489(2):70-5. PubMed ID: 21914468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of Aedes aegypti (Diptera: Culicidae) larvae to three xenobiotic exposures: larval tolerance and detoxifying enzyme activities.
    Boyer S; David JP; Rey D; Lemperiere G; Ravanel P
    Environ Toxicol Chem; 2006 Feb; 25(2):470-6. PubMed ID: 16519308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemicals isolated from Justicia adhatoda Linn reduce fitness of the mosquito, Aedes aegypti L.
    Thanigaivel A; Senthil-Nathan S; Vasantha-Srinivasan P; Edwin ES; Ponsankar A; Selin-Rani S; Pradeepa V; Chellappandian M; Kalaivani K; Abdel-Megeed A; Narayanan R; Murugan K
    Arch Insect Biochem Physiol; 2017 Apr; 94(4):. PubMed ID: 28266058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on prophenoloxidase activation in the mosquito Aedes aegypti L.
    Ashida M; Kinoshita K; Brey PT
    Eur J Biochem; 1990 Mar; 188(3):507-15. PubMed ID: 2110057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.