BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 4252252)

  • 1. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. IV. Hydroxamate formation from a phosphorylated intermediate and 2-hydroxy-5-nitrobenzyl hydroxylamine.
    Yamamoto T; Yoda A; Tonomura Y
    J Biochem; 1971 Apr; 69(4):807-9. PubMed ID: 4252252
    [No Abstract]   [Full Text] [Related]  

  • 2. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal mus le. V. Vectorial requirements for calcium and magnesium ions of three partial reactions of ATPase: formation and decomposition of a phosphorylated intermediate and ATP-formation from ADP and the intermediate.
    Kanazawa T; Yamada A; Yamamoto T; Tonomura Y
    J Biochem; 1971 Jul; 70(1):95-123. PubMed ID: 4254539
    [No Abstract]   [Full Text] [Related]  

  • 3. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

  • 4. A study of the phosphorylated intermediate of sarcoplasmic reticulum ATPase.
    Inesi G; Maring E; Murphy AJ; McFarland BH
    Arch Biochem Biophys; 1970 May; 138(1):285-94. PubMed ID: 4245930
    [No Abstract]   [Full Text] [Related]  

  • 5. Proceedings: Properties of a phosphorylated intermediate of the Ca2+-dependent ATPase and ADP-ATP phosphate exchange of cardiac sarcoplasmic reticulum.
    Suko J; Hasselbach W
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R97. PubMed ID: 4276657
    [No Abstract]   [Full Text] [Related]  

  • 6. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport.
    Makinose M
    Eur J Biochem; 1969 Aug; 10(1):74-82. PubMed ID: 4242109
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of denervation on fragmented sarcoplasmic reticulum of white and red muscle.
    Sreter FA
    Exp Neurol; 1970 Oct; 29(1):52-64. PubMed ID: 4249102
    [No Abstract]   [Full Text] [Related]  

  • 8. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Intermediate formation of phosphoryl protein.
    Yamamoto T; Tonomura Y
    J Biochem; 1968 Aug; 64(2):137-45. PubMed ID: 4236838
    [No Abstract]   [Full Text] [Related]  

  • 9. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2 plus translocation coupled with formation of a phosphorylated intermediate.
    Sumida M; Tonomura Y
    J Biochem; 1974 Feb; 75(2):283-97. PubMed ID: 4276200
    [No Abstract]   [Full Text] [Related]  

  • 10. [Molecular mechanism of the Ca2+ transport by the sarcoplasmic reticulum].
    Yamamoto T
    Tanpakushitsu Kakusan Koso; 1971 May; 16(5):325-34. PubMed ID: 4252112
    [No Abstract]   [Full Text] [Related]  

  • 11. Reaction mechanism of the Ca 2+ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VI. Co-operative transition of ATPase activity during the initial phase.
    Yamada S; Yamamoto T; Kanazawa T; Tonomura Y
    J Biochem; 1971 Aug; 70(2):279-91. PubMed ID: 4255300
    [No Abstract]   [Full Text] [Related]  

  • 12. Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport.
    Martonosi A
    J Biol Chem; 1969 Feb; 244(4):613-20. PubMed ID: 4238763
    [No Abstract]   [Full Text] [Related]  

  • 13. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 3. Ca plus-uptake and ATP-splitting.
    Yamada S; Yamamoto T; Tonomura Y
    J Biochem; 1970 Jun; 67(6):789-94. PubMed ID: 4247349
    [No Abstract]   [Full Text] [Related]  

  • 14. Reaction mechanism of the Ca++ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies.
    Yamamoto T; Tonomura Y
    J Biochem; 1967 Nov; 62(5):558-75. PubMed ID: 4231496
    [No Abstract]   [Full Text] [Related]  

  • 15. Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 8. Molecular mechanism of the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum.
    Yamada S; Sumida M; Tonomura Y
    J Biochem; 1972 Dec; 72(6):1537-48. PubMed ID: 4268997
    [No Abstract]   [Full Text] [Related]  

  • 16. Sarcoplasmic reticulum. XIV. Acetylphosphate and carbamylphosphate as energy sources for Ca++ transport.
    Pucell A; Martonosi A
    J Biol Chem; 1971 May; 246(10):3389-97. PubMed ID: 4324900
    [No Abstract]   [Full Text] [Related]  

  • 17. [ATPase activity and processes of calcium transport in membranes of sarcoplasmic reticulum of skeletal muscles with E-avitaminotic dystrophy].
    Kurskiĭ MD; Grigor'eva VA; Medovar EN; Meshkova LI
    Ukr Biokhim Zh (1978); 1978; 50(1):85-90. PubMed ID: 146930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium-activated adenosinetriphosphatase and calcium uptake by sarcoplasmic reticulum.
    Duggan PF
    Life Sci; 1967 Mar; 6(6):561-7. PubMed ID: 4226765
    [No Abstract]   [Full Text] [Related]  

  • 19. Reaction mechanism of the Ca(2)+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. XI. Re-evaluation of the transition of ATPase activity during the initial phase.
    Sumida M; Kanazawa T; Tonomura Y
    J Biochem; 1976 Feb; 79(2):259-64. PubMed ID: 131795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The uptake and output of calcium ions by sarcoplasmic vesicles of the rabbit skeletal muscle under the influence of ethanol].
    Jenny E
    Schweiz Arch Tierheilkd; 1970 Sep; 112(9):436-42. PubMed ID: 4249044
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.