These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 4253012)

  • 1. Skeletal muscle ribosome subunits and peptidyl transfer ribonucleic acid.
    Stirewalt WS; Castles JJ; Wool IG
    Biochemistry; 1971 Apr; 10(9):1594-8. PubMed ID: 4253012
    [No Abstract]   [Full Text] [Related]  

  • 2. Polyphenylalanine synthesis and binding of phenylalanyl transfer ribonucleic acid by ribosomes from muscle of normal and diabetic rats.
    Castles JJ; Rolleston FS; Wool IG
    J Biol Chem; 1971 Mar; 246(6):1799-805. PubMed ID: 5547705
    [No Abstract]   [Full Text] [Related]  

  • 3. Functional instability of skeletal muscle ribosomes after protein restriction of rats.
    Omstedt PT; von der Decken A
    J Nutr; 1974 Aug; 104(8):1061-8. PubMed ID: 4852107
    [No Abstract]   [Full Text] [Related]  

  • 4. A model of the functioning ribosome: locking and unlocking of the ribosome subparticles.
    Spirin AS
    Cold Spring Harb Symp Quant Biol; 1969; 34():197-207. PubMed ID: 4909498
    [No Abstract]   [Full Text] [Related]  

  • 5. The reassociation of ribosomal subunits from the muscle of normal and diabetic animals.
    Wettenhall RE; Nakaya K; Wool IG
    Biochem Biophys Res Commun; 1974 Jul; 59(1):230-6. PubMed ID: 4210366
    [No Abstract]   [Full Text] [Related]  

  • 6. Interaction of tRNA with ribosomes--binding and release of tRNA.
    Kaji A; Igarashi K; Ishitsuka H
    Cold Spring Harb Symp Quant Biol; 1969; 34():167-77. PubMed ID: 4909495
    [No Abstract]   [Full Text] [Related]  

  • 7. Movement of the ribosome along the messenger ribonucleic acid during protein synthesis.
    Gupta SL; Waterson J; Sopori ML; Weissman SM; Lengyel P
    Biochemistry; 1971 Nov; 10(24):4410-21. PubMed ID: 4946921
    [No Abstract]   [Full Text] [Related]  

  • 8. Codeword recognition on 30 S ribosomes.
    Pestka S; Nirenberg M
    Cold Spring Harb Symp Quant Biol; 1966; 31():641-56. PubMed ID: 4866409
    [No Abstract]   [Full Text] [Related]  

  • 9. A simple assay for protein chain termination using natural peptidyl-tRNA.
    Menninger JR
    Biochim Biophys Acta; 1971 Jun; 240(2):237-43. PubMed ID: 4934601
    [No Abstract]   [Full Text] [Related]  

  • 10. Mouse brain ribosomal subunits: role of ribosome-associated factors on aminoacyl-tRNA binding and polypeptide synthesis.
    Gilbert BE; Johnson TC
    Brain Res; 1973 Dec; 63():313-22. PubMed ID: 4764301
    [No Abstract]   [Full Text] [Related]  

  • 11. Structural and functional defects in mammalian ribosomes after potassium deficiency.
    Näslund PH; Hultin T
    Biochim Biophys Acta; 1971 Nov; 254(1):104-16. PubMed ID: 5134202
    [No Abstract]   [Full Text] [Related]  

  • 12. Protein synthesis with ribonuclease digested ribosomes.
    Kuechler E; Bauer K; Rich A
    Biochim Biophys Acta; 1972 Sep; 277(3):615-27. PubMed ID: 4560817
    [No Abstract]   [Full Text] [Related]  

  • 13. Failure of fusidic acid and siomycin to block ribosomes in the pretranslocated state.
    Celma ML; Vazquez D; Modolell J
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1240-6. PubMed ID: 4560008
    [No Abstract]   [Full Text] [Related]  

  • 14. Properties of 30S ribosomal particles reconstituted from precursor 16S ribonucleic acid.
    Wireman JW; Sypherd PS
    Biochemistry; 1974 Mar; 13(6):1215-21. PubMed ID: 4592471
    [No Abstract]   [Full Text] [Related]  

  • 15. Neurospora crassa ribosomes: effects of bound peptidyl-tRNA on dissociation into subunits and on phenylalanine polymerization at low Mg 2+ concentration.
    Sturani E; Alberghina FA; Casacci F
    Biochim Biophys Acta; 1971 Dec; 254(2):297-303. PubMed ID: 4257627
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 8. Survey of the effect of antibiotics of N-acetyl-phenylalanyl-puromycin formation: possible mechanism of chloramphenicol action.
    Pestka S
    Arch Biochem Biophys; 1970 Jan; 136(1):80-8. PubMed ID: 4907015
    [No Abstract]   [Full Text] [Related]  

  • 17. The regulation of protein synthesis in nephrotic rat kidney ribosome preparations.
    Nicholls DM; Ryan MP; Miall SH; Westall CG; Cappon ID
    Can J Biochem; 1970 Mar; 48(3):308-15. PubMed ID: 5438319
    [No Abstract]   [Full Text] [Related]  

  • 18. Evidence that small phenylalanine peptides bound to ribosomes are attached to sRNA.
    Shaeffer J; Arlinghaus R; Schweet R
    Arch Biochem Biophys; 1968 May; 125(2):623-31. PubMed ID: 5656812
    [No Abstract]   [Full Text] [Related]  

  • 19. In vitro and in vivo protein synthesis in Candida albicans. 3. Protein synthesis and inhibition.
    Yamaguchi H; Iwata K
    Sabouraudia; 1970 Nov; 8(3):201-11. PubMed ID: 5496806
    [No Abstract]   [Full Text] [Related]  

  • 20. Aminoacyltransferase I-catalysed binding of phenylalanyl-transfer ribonucleic acid to muscle ribosomes from normal and diabetic rats.
    Leader DP; Wool IG; Castles JJ
    Biochem J; 1971 Sep; 124(3):537-41. PubMed ID: 5135240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.