These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 4257491)

  • 1. The reaction of creatine kinase with dithiobisnitrobenzoic acid. Formation of derivatives of the enzyme.
    O'Sullivan WJ
    Int J Protein Res; 1971; 3(3):139-47. PubMed ID: 4257491
    [No Abstract]   [Full Text] [Related]  

  • 2. Magnetic resonance and catalytic studies of pyruvate kinase with essential sulfhydryl or lysyl epsilon-amino groups chemically modified.
    Flashner M; Tamir I; Mildvan AS; Meloche HP; Coon MJ
    J Biol Chem; 1973 May; 248(10):3419-25. PubMed ID: 4702870
    [No Abstract]   [Full Text] [Related]  

  • 3. Synthesis of an adenosine 5'-monophosphate analog and its use for the affinity labeling of the effector binding site of rabbit skeletal muscle phosphorylase b.
    Hulla FW; Fasold H
    Biochemistry; 1972 Mar; 11(6):1056-61. PubMed ID: 5013815
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural changes induced by substrates and anions at the active site of creatine kinase. Electron paramagnetic resonance and nuclear magnetic relaxation rate studies of the manganous complexes.
    Reed GH; Cohn M
    J Biol Chem; 1972 May; 247(10):3073-81. PubMed ID: 4337505
    [No Abstract]   [Full Text] [Related]  

  • 5. Electron paramagnetic resonance and proton relaxation rate studies of spin-labeled creatine kinase and its complexes.
    Taylor JS; McLaughlin A; Cohn M
    J Biol Chem; 1971 Oct; 246(19):6029-36. PubMed ID: 4330064
    [No Abstract]   [Full Text] [Related]  

  • 6. Magnetic resonance studies of the interaction of spin-labeled creatine kinase with paramagnetic manganese-substrate complexes.
    Cohn M; Diefenbach H; Taylor JS
    J Biol Chem; 1971 Oct; 246(19):6037-42. PubMed ID: 4330065
    [No Abstract]   [Full Text] [Related]  

  • 7. The role of the lysyl residue at the active site of creatine kinase. Nuclear Overhauser effect studies.
    James TL; Cohn M
    J Biol Chem; 1974 Apr; 249(8):2599-604. PubMed ID: 4856652
    [No Abstract]   [Full Text] [Related]  

  • 8. Proton magnetic resonance studies on SH groups in glycogen phosphorylase b.
    Gaspar R; Damjanovich S
    Biochim Biophys Acta; 1973 Jul; 315(1):191-4. PubMed ID: 4743902
    [No Abstract]   [Full Text] [Related]  

  • 9. Reaction of 2-bromoacetamide-4-nitrophenol with heavy meromyosin ATPase.
    Uchida K; Tanaka K; Hiratsuka T
    Biochim Biophys Acta; 1972 Jan; 256(1):132-41. PubMed ID: 4333295
    [No Abstract]   [Full Text] [Related]  

  • 10. Thallium-205 nuclear magnetic resonance study of pyruvate kinase and its substrates. Evidence for a substrate-induced conformational change.
    Reuben J; Kayne FJ
    J Biol Chem; 1971 Oct; 246(20):6227-34. PubMed ID: 5127427
    [No Abstract]   [Full Text] [Related]  

  • 11. The binding of manganese-nucleoside diphosphates to creatine kinase as determined by proton relaxation rate measurements.
    O'Sullivan WJ; Reed GH; Marsden KH; Gough GR; Lee CS
    J Biol Chem; 1972 Dec; 247(24):7839-43. PubMed ID: 4640926
    [No Abstract]   [Full Text] [Related]  

  • 12. Specificity of creatine kinase for guanidino substrates. Kinetic and proton nuclear magnetic relaxation rate studies.
    McLaughlin AC; Cohn M; Kenyon GL
    J Biol Chem; 1972 Jul; 247(13):4382-8. PubMed ID: 5035696
    [No Abstract]   [Full Text] [Related]  

  • 13. The effects of nucleotides and Mg 2+ on the electron spin resonance spectra of myosin spin labeled at the S 2 thiol groups.
    Seidel JC
    Arch Biochem Biophys; 1972 Oct; 152(2):839-48. PubMed ID: 4344134
    [No Abstract]   [Full Text] [Related]  

  • 14. Relationship of cysteine and tyrosine residues to adenosine triphosphate hydrolysis by mitochondrial adenine triphosphatase.
    Senior AE
    Biochemistry; 1973 Sep; 12(19):3622-7. PubMed ID: 4274719
    [No Abstract]   [Full Text] [Related]  

  • 15. Conformational states of rabbit muscle phosphofructokinase investigated by a spin label probe.
    Jones R; Dwek RA; Walker IO
    FEBS Lett; 1972 Oct; 26(1):92-6. PubMed ID: 4344298
    [No Abstract]   [Full Text] [Related]  

  • 16. Fatty acid synthetase from lactating rat mammary gland. 3. Dissociation and reassociation.
    Smith S; Abraham S
    J Biol Chem; 1971 Nov; 246(21):6428-35. PubMed ID: 5167249
    [No Abstract]   [Full Text] [Related]  

  • 17. Half-of-the-sites reactivity and the conformational states of cytidine triphosphate synthetase.
    Levitzki A; Stallcup WB; Koshland DE
    Biochemistry; 1971 Aug; 10(18):3371-8. PubMed ID: 4940762
    [No Abstract]   [Full Text] [Related]  

  • 18. Creatine kinase: a review of some recent work on the mechanism and subunit behaviour of the enzyme.
    Bickerstaff GF; Price NC
    Int J Biochem; 1978; 9(1):1-8. PubMed ID: 344081
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies on adenosine triphosphate transphosphorylases. X. Reactivity and anlysis of the sulfhydryl groups of the crystalline adenosine triphosphate-creatine transphosphorylase from calf brain.
    Okabe K; Jacobs HK; Kuby SA
    J Biol Chem; 1970 Dec; 245(24):6498-510. PubMed ID: 5529899
    [No Abstract]   [Full Text] [Related]  

  • 20. Structures of manganese(II) complexes with ATP, ADP, and phosphocreatine in the reactive central complexes with creatine kinase: electron paramagnetic resonance studies with oxygen-17-labeled ligands.
    Leyh TS; Goodhart PJ; Nguyen AC; Kenyon GL; Reed GH
    Biochemistry; 1985 Jan; 24(2):308-16. PubMed ID: 2983754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.