These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 4258205)

  • 1. A possible relation between the location of D and E fragments and of the N-terminal disulphide knots in fibrinogen molecule.
    Latallo ZS; Dudek GA; Kloczewiak M
    Scand J Haematol Suppl; 1971; 13():37-41. PubMed ID: 4258205
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterisation of large fragments rich in disulphide bridges from CNBr-treated products of exhaustive proteolysis of fibrinogen by plasmin.
    Dudek-Wojciechowska GA; Kloczewiak M; Latallo ZS; Kopeć M
    Biochim Biophys Acta; 1973 Feb; 295(2):536-42. PubMed ID: 4266974
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification and purification of fibrinogen degradation products produced by plasmin: considerations on the structure of fibrinogen.
    Marder VJ
    Scand J Haematol Suppl; 1971; 13():21-36. PubMed ID: 4258202
    [No Abstract]   [Full Text] [Related]  

  • 4. The essential covalent structure of human fibrinogen evinced by analysis of derivatives formed during plasmic hydrolysis.
    Mosesson MW; Finlayson JS; Galanakis DK
    J Biol Chem; 1973 Nov; 248(22):7913-29. PubMed ID: 4127218
    [No Abstract]   [Full Text] [Related]  

  • 5. Plasmic degradation of human fibrinogen. I. Structural characterization of degradation products.
    Furlan M; Beck EA
    Biochim Biophys Acta; 1972 May; 263(3):631-44. PubMed ID: 4260762
    [No Abstract]   [Full Text] [Related]  

  • 6. Isolation and characterization of N-terminal fragments obtained by plasmin digestion of human fibrinogen.
    Iwanaga S; Wallén P; Gröndahl NJ; Henschan A; Blombäck B
    Biochim Biophys Acta; 1967 Dec; 147(3):606-9. PubMed ID: 4230076
    [No Abstract]   [Full Text] [Related]  

  • 7. Plasmic degradation of fibrinogen.
    Wallén P
    Scand J Haematol Suppl; 1971; 13():3-14. PubMed ID: 4258207
    [No Abstract]   [Full Text] [Related]  

  • 8. Isolation and characterization of the clottable low molecular weight fibrinogen derived by limited plasmin hydrolysis of human fraction I-4.
    Sherman LA; Mosesson MW; Sherry S
    Biochemistry; 1969 Apr; 8(4):1515-23. PubMed ID: 4241001
    [No Abstract]   [Full Text] [Related]  

  • 9. Distribution of carbohydrate among the polypeptide chains and plasmin digest products of human fibrinogen.
    Mills DA; Triantaphyllopoulos DC
    Arch Biochem Biophys; 1969 Dec; 135(1):28-35. PubMed ID: 4243528
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on human secretory immunoglobulin A. V. Trypsin hydrolysis at elevated temperatures.
    Zikan J; Mestecky J; Schrohenloher RE; Tomana M; Kulhavy R
    Immunochemistry; 1972 Dec; 9(12):1185-93. PubMed ID: 4119810
    [No Abstract]   [Full Text] [Related]  

  • 11. High molecular weight products of the late stage of fibrinogen proteolysis by plasmin and their structural relation to the fibrinogen molecule.
    Budzyński AZ; Stahl M; Kopeć M; Latallo ZS; Wegrzynowicz Z; Kowalski E
    Biochim Biophys Acta; 1967 Oct; 147(2):313-23. PubMed ID: 4229214
    [No Abstract]   [Full Text] [Related]  

  • 12. Plasminogen-plasmin system. I. Purification and properties of human plasminogen.
    Abiko Y; Iwamoto M; Shimizu M
    J Biochem; 1968 Dec; 64(6):743-50. PubMed ID: 4238315
    [No Abstract]   [Full Text] [Related]  

  • 13. Degradation of fibrinogen by plasmin: physicochemical characteristics and their correlation to antithrombic activity.
    Triantaphyllopoulos E
    Thromb Diath Haemorrh Suppl; 1973; 56():91-112. PubMed ID: 4281941
    [No Abstract]   [Full Text] [Related]  

  • 14. Formation of soluble fibrin polymers. Fibrinogen degradation fragments D and E fail to form soluble complexes with fibrin monomer.
    Smith GF; Bang NU
    Biochemistry; 1972 Aug; 11(16):2958-66. PubMed ID: 4261258
    [No Abstract]   [Full Text] [Related]  

  • 15. Human immunoglobulin E. The primary structure of the C-terminal domain of the epsilon chain.
    Bennich H; Milstein C; Secher DS
    FEBS Lett; 1973 Jun; 33(1):49-53. PubMed ID: 4722495
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterisation and comparison of macromolecular end products of fibrinogen and fibrin proteolysis by plasmin.
    Dudek GA; Kloczewiak M; Budzyński AZ; Latallo ZS; Kopeć M
    Biochim Biophys Acta; 1970 Jul; 214(1):44-51. PubMed ID: 4249862
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of the terminal degradation products of canine fibrinogen by plasmin.
    Chen JP; Hutchison HT; Nanninga LB; Guest MM
    Biochim Biophys Acta; 1975 Mar; 386(1):69-79. PubMed ID: 123781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanogen bromide cleavage of bovine fibrinogen. Identification of a dimeric N-terminal peptide and two other disulfide containing fragments.
    Timpl R; Gollwitzer R
    FEBS Lett; 1973 Jan; 29(2):92-6. PubMed ID: 4737027
    [No Abstract]   [Full Text] [Related]  

  • 19. Ribonuclease from Streptomyces erythreus. Purification and properties.
    Yoshida N; Inoue H; Sasaki A; Otsuka H
    Biochim Biophys Acta; 1971 Feb; 228(3):636-47. PubMed ID: 5575908
    [No Abstract]   [Full Text] [Related]  

  • 20. Structure of plasmic degradation products of human fibrinogen. Fibrinopeptide and polypeptide chain analysis.
    Budzynski AZ; Marder VJ; Shainoff JR
    J Biol Chem; 1974 Apr; 249(7):2294-302. PubMed ID: 4131967
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.