These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 4258940)

  • 1. Carbodiimide-resistant membrane adenosine triphosphatase in mutants of Streptococcus faecalis. I. Studies of the mechanism of resistance.
    Abrams A; Smith JB; Baron C
    J Biol Chem; 1972 Mar; 247(5):1484-8. PubMed ID: 4258940
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibition of membrane-bound adenosine triphosphatase and of cation transport in Streptococcus faecalis by N,N'-dicyclohexylcarbodiimide.
    Harold FM; Baarda JR; Baron C; Abrams A
    J Biol Chem; 1969 May; 244(9):2261-8. PubMed ID: 4239369
    [No Abstract]   [Full Text] [Related]  

  • 3. Cation transport and electrogenesis by Streptococcus faecalis. II. Proton and sodium extrusion.
    Harold FM; Papineau D
    J Membr Biol; 1972; 8(1):45-62. PubMed ID: 4263675
    [No Abstract]   [Full Text] [Related]  

  • 4. Membrane adenosine triphosphatase from Streptococcus faecalis. Preparation and homogeneity.
    Schnebli HP; Abrams A
    J Biol Chem; 1970 Mar; 245(5):1115-21. PubMed ID: 4244602
    [No Abstract]   [Full Text] [Related]  

  • 5. A transmembrane pH gradient in Streptococcus faecalis: origin, and dissipation by proton conductors and N,N'-dicyclohexylcarbodimide.
    Harold FM; Pavlasová E; Baarda JR
    Biochim Biophys Acta; 1970; 196(2):235-44. PubMed ID: 4244306
    [No Abstract]   [Full Text] [Related]  

  • 6. Dio 9 and chlorhexidine: inhibitors of membrane-bound ATPase and of cation transport in Streptococcus faecalis.
    Harold FM; Baarda JR; Baron C; Abrams A
    Biochim Biophys Acta; 1969 Jun; 183(1):129-36. PubMed ID: 4240406
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibitory action of carbodiimides on bacterial membrane ATPase.
    Abrams A; Baron C
    Biochem Biophys Res Commun; 1970 Nov; 41(4):858-63. PubMed ID: 4249016
    [No Abstract]   [Full Text] [Related]  

  • 8. Increased membrane ATPase and K + transport rates in Streptococcus faecalis induced by K + restriction during growth.
    Abrams A; Smith JB
    Biochem Biophys Res Commun; 1971 Sep; 44(6):1488-95. PubMed ID: 4334334
    [No Abstract]   [Full Text] [Related]  

  • 9. Cellular incorporation of 32 P-orthophosphate into the membrane ATPase of Streptococcus faecalis.
    Abrams A; Nolan EA
    Biochem Biophys Res Commun; 1972 Aug; 48(4):982-9. PubMed ID: 4264157
    [No Abstract]   [Full Text] [Related]  

  • 10. Interaction of a solubilized membrane ATPase with lipid bilayer membranes.
    Redwood WR; Gibbes DC; Thompson TE
    Biochim Biophys Acta; 1973 Aug; 318(1):10-22. PubMed ID: 4270538
    [No Abstract]   [Full Text] [Related]  

  • 11. Purification of the ATPase of Streptococcus faecalis.
    Solioz M; Fürst P
    Methods Enzymol; 1988; 157():680-9. PubMed ID: 2852757
    [No Abstract]   [Full Text] [Related]  

  • 12. Purification and characterization of the membrane adenosine triphosphatase complex from the wild-type and N,N'-dicyclohexylcarbodiimide-resistant strains of Streptococcus faecalis.
    Leimgruber RM; Jensen C; Abrams A
    J Bacteriol; 1981 Aug; 147(2):363-72. PubMed ID: 6455413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The isolation of bacterial membrane ATPase and nectin.
    Abrams A; Baron C; Schnebli HP
    Methods Enzymol; 1974; 32():428-39. PubMed ID: 4280489
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of Mg2+ ions in the subunit structure and membrane binding properties of bacterial energy transducing ATPase.
    Abrams A; Jensen C; Morris DH
    Biochem Biophys Res Commun; 1976 Apr; 69(3):804-11. PubMed ID: 131554
    [No Abstract]   [Full Text] [Related]  

  • 15. Binding of a solubilized membrane ATPase to phospholipid bilayers.
    Redwood WR; Patel BC
    Biochim Biophys Acta; 1974 Aug; 363(1):70-85. PubMed ID: 4277375
    [No Abstract]   [Full Text] [Related]  

  • 16. Chemiosmotic interpretation of active transport in bacteria.
    Harold FM
    Ann N Y Acad Sci; 1974 Feb; 227():297-311. PubMed ID: 4275121
    [No Abstract]   [Full Text] [Related]  

  • 17. Further studies of the D-aspartic acid-activating enzyme of Streptococcus faecalis and its attachment to the membrane.
    Staudenbauer W; Willoughby E; Strominger JL
    J Biol Chem; 1972 Sep; 247(17):5289-96. PubMed ID: 4626717
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of streptococcal adenosine triphosphatase by fluoride.
    Marquis RE
    J Dent Res; 1977 Jun; 56(6):704. PubMed ID: 142783
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of light scattering on the circular dichroism of biological membranes.
    Litman BJ
    Biochemistry; 1972 Aug; 11(17):3243-7. PubMed ID: 4261766
    [No Abstract]   [Full Text] [Related]  

  • 20. Membrane adenosine triphosphatase from Streptococcus faecalis. Molecular weight, subunit structure, and amino acid composition.
    Schnebli HP; Vatter AE; Abrams A
    J Biol Chem; 1970 Mar; 245(5):1122-7. PubMed ID: 4244603
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.