These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 4259445)

  • 1. [Storage of mucopolysaccharides and lipoids in tubule cells of the rat kidney after experimental thrombosis of the renal vein].
    Romen W; Bannasch P
    Virchows Arch B Cell Pathol; 1972; 10(1):51-66. PubMed ID: 4259445
    [No Abstract]   [Full Text] [Related]  

  • 2. Fine structure and staining of mucosubstances on "intercalated cells" from the rat distal convoluted tubule and collecting duct.
    Griffith LD; Bulger RE; Trump BF
    Anat Rec; 1968 Mar; 160(3):643-62. PubMed ID: 4174122
    [No Abstract]   [Full Text] [Related]  

  • 3. [Function of mucopolysaccharides and acid mucoids of the renal medulla in urine production. I. Histochemical study during normal diuresis].
    Morard JC; Poirier MF
    J Physiol (Paris); 1968; 60(4):297-321. PubMed ID: 4178477
    [No Abstract]   [Full Text] [Related]  

  • 4. Origin of renal papillary droplets in pyridoxine deficiency.
    Datsis AG
    Exp Pathol (Jena); 1972; 7(1):102-4. PubMed ID: 4666080
    [No Abstract]   [Full Text] [Related]  

  • 5. The ultrastructural bases of the initial stages of renal tubular excretion. A cytochemical study using horseradish peroxidase as a tracer.
    Feria-Velasco A
    Lab Invest; 1974 Feb; 30(2):190-200. PubMed ID: 4813453
    [No Abstract]   [Full Text] [Related]  

  • 6. Electron microscopic studies of the epithelium of the proximal tubule of the rat kidney. 3. Microbodies, multivesicular bodies, and the golgi apparatus.
    Ericsson JL; Trump BF
    Lab Invest; 1966 Oct; 15(10):1610-33. PubMed ID: 5957287
    [No Abstract]   [Full Text] [Related]  

  • 7. [Distribution of acid mucopolysaccharides in connection with the topographic histological relationships in the medullary layer of the kidney].
    Dubynin TL
    Arkh Anat Gistol Embriol; 1968; 55(9):56-8. PubMed ID: 4236274
    [No Abstract]   [Full Text] [Related]  

  • 8. [Protein absorption droplets and lysosomes in the proximal convoluted tubule of the rat kidney. Combined ectronmicroscopic and enzyme-cytochemical studies using intratubular injections with ferritin].
    Thoenes W; Langer KH; Pfeifer U; Romen W
    Virchows Arch B Cell Pathol; 1970; 5(2):124-43. PubMed ID: 4986582
    [No Abstract]   [Full Text] [Related]  

  • 9. [Experimental phlebothrombosis and thrombophlebitis].
    Askerkhanov RP; Shakhnazarov AM; Zagidov MZ
    Eksp Khir Anesteziol; 1975; (3):23-6. PubMed ID: 126857
    [No Abstract]   [Full Text] [Related]  

  • 10. [Absorption of protein, degradation of cytoplasm, and lytic activities in the renal tubule. Investigations on ferritin-absorbing single tubules of the rat kidney].
    Thoenes W; Langer KH; Pfeifer U
    Verh Dtsch Ges Pathol; 1968; 52():294-300. PubMed ID: 4182245
    [No Abstract]   [Full Text] [Related]  

  • 11. [Congenital nephrotic syndrome. Anatomopathological study in man. Experimental trial with (SO4) 3 In2].
    Voisin MC; Durroux R; Cros M; Bouissou H
    J Urol Nephrol (Paris); 1969 Sep; 75(9):642-6. PubMed ID: 5406089
    [No Abstract]   [Full Text] [Related]  

  • 12. Experimental renal vein constriction. Its relation to renal lesions observed in human renal vein thrombosis and the nephrotic syndrome.
    Fisher ER; Sharkey D; Pardo V; Vuzevski V
    Lab Invest; 1968 Jun; 18(6):689-99. PubMed ID: 5667866
    [No Abstract]   [Full Text] [Related]  

  • 13. The use of exogenous myoglobin as an ultrastructural tracer. Reabsorption and translocation of protein by the renal tubule.
    Anderson WA
    J Histochem Cytochem; 1972 Sep; 20(9):672-84. PubMed ID: 4342463
    [No Abstract]   [Full Text] [Related]  

  • 14. Reduction of osteopontin in vivo inhibits tubular epithelial to mesenchymal transition in rats with chronic allograft nephropathy.
    Xu D; Zhang T; Chen X; Zhou Q; Liu C; Deng Z; Zhang L; Ying C; Zhang W; Gu M
    Transplant Proc; 2013 Mar; 45(2):659-65. PubMed ID: 23498805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Ultrastructural cell changes of the tubular epithelium of the kidney after ligation of the kidney veins].
    David H
    Verh Dtsch Ges Pathol; 1965; 49():141-6. PubMed ID: 4160533
    [No Abstract]   [Full Text] [Related]  

  • 16. [Electron-histochemical identification and differentiation of the chemical composition of the supramembranous layer of kidney cells].
    Lysenko AI
    Arkh Patol; 1977; 39(4):56-62. PubMed ID: 880059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosaminoglycans (macromolecular sugars) of the rat renal papilla: ultrastructural and cytochemical findings.
    France R; Gray ME
    Trans Am Clin Climatol Assoc; 1987; 98():208-21. PubMed ID: 3617315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of sulfolipids in isolated renal tubules from rat.
    Nagai K; Tadano-Aritomi K; Iida-Tanaka N; Yoshizawa H; Ishizuka I
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Mar; 140(3):487-95. PubMed ID: 15694597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Electron microscopic studies on sodium and chloride transport in the proximal tubular cells of the rat kidney].
    Nolte A
    Z Zellforsch Mikrosk Anat; 1966; 72(4):562-73. PubMed ID: 5984162
    [No Abstract]   [Full Text] [Related]  

  • 20. [Genesis of "watery vacuolation" in epithelial cells of the proximal kidney tubules under conditions of energy insufficiency. Investigations on rat kidneys after intoxication with potassium cyanide and after hemorrhagic shock].
    Langer KH; Thoenes W
    Verh Dtsch Ges Pathol; 1969; 53():394-400. PubMed ID: 4190753
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.