These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 4259821)

  • 1. [Hypotheses on structural transitions in ATPase].
    Mikel'saar KhN
    Dokl Akad Nauk SSSR; 1972 Mar; 203(3):704-6. PubMed ID: 4259821
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural dissection of ATP turnover in the prototypical GHL ATPase TopoVI.
    Corbett KD; Berger JM
    Structure; 2005 Jun; 13(6):873-82. PubMed ID: 15939019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function relationships in an anion-translocating ATPase.
    Bhattacharjee H; Zhou T; Li J; Gatti DL; Walmsley AR; Rosen BP
    Biochem Soc Trans; 2000; 28(4):520-6. PubMed ID: 10961952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Estimation of the distance between ATPase and substrate-binding sites in nitrogenase by an NMR method].
    Syrtsova LA; Likhtenshteĭn GI; Pisarskaia TN; Berdinskiĭ VL; Lezina VP; Stepaniants AU
    Mol Biol; 1974; 8(6):824-31. PubMed ID: 4283380
    [No Abstract]   [Full Text] [Related]  

  • 5. Identification of conformational states of transport ATPase by kinetic analysis of ouabain binding.
    Schönfeld W; Schön R; Menke KH; Repke KR
    Acta Biol Med Ger; 1972; 28(6):935-56. PubMed ID: 4264261
    [No Abstract]   [Full Text] [Related]  

  • 6. Sulfhydryl groups and the ATPase activity of actin.
    Laki K; Alving RE
    J Mechanochem Cell Motil; 1973 May; 2(1):45-9. PubMed ID: 4273567
    [No Abstract]   [Full Text] [Related]  

  • 7. Synaptic vesicles: structure of chromaffin granule membranes.
    Pollard HB; Miller A; Cox GC
    J Supramol Struct; 1973; 1(4):295-306. PubMed ID: 4358441
    [No Abstract]   [Full Text] [Related]  

  • 8. [Topography of the nitrogenase ATPase centre studied by fluorescence labeling].
    Alfimova EIa; Syrtsova LA; Pisarskaia TN; Likhtenshteĭn GI
    Mol Biol; 1974; 8(5):676-85. PubMed ID: 4283378
    [No Abstract]   [Full Text] [Related]  

  • 9. [Denatured transitions of the molecular chaperone GroEL from Escherichia coli].
    Surin AK; Kotova NV; Marchenkova SIu; Sokolovskiĭ IV; Rodionova NA; Iaklichkin SIu; Semisotnov GV
    Bioorg Khim; 1997 Apr; 23(4):251-6. PubMed ID: 9221726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid-protein interactions in the structure of biological membranes.
    Lenaz G
    Subcell Biochem; 1974 Sep; 3(3):167-248. PubMed ID: 4373883
    [No Abstract]   [Full Text] [Related]  

  • 11. Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes.
    Haupt M; Bramkamp M; Coles M; Altendorf K; Kessler H
    J Mol Biol; 2004 Oct; 342(5):1547-58. PubMed ID: 15364580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-adenosine triphosphate-lipid interactions and their significance in the excitatory membrane.
    Abood LG
    Neurosci Res (N Y); 1969; 2(0):41-70. PubMed ID: 4276765
    [No Abstract]   [Full Text] [Related]  

  • 13. Nucleotide-induced transition of GroEL from the high-affinity to the low-affinity state for a target protein: effects of ATP and ADP on the GroEL-affected refolding of alpha-lactalbumin.
    Makio T; Takasu-Ishikawa E; Kuwajima K
    J Mol Biol; 2001 Sep; 312(3):555-67. PubMed ID: 11563916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of DnaB helicase of Escherichia coli: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization.
    Biswas EE; Biswas SB
    Biochemistry; 1999 Aug; 38(34):10919-28. PubMed ID: 10460147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation by cAMP-dependent protein kinase modulates the structural coupling between the transmembrane and cytosolic domains of phospholamban.
    Li J; Bigelow DJ; Squier TC
    Biochemistry; 2003 Sep; 42(36):10674-82. PubMed ID: 12962492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ion-dependent conformational transitions in transport ATPase membrane preparations].
    Raĭkhman LM; Moshkovskiĭ IuS
    Mol Biol; 1974; 8(5):768-74. PubMed ID: 4283379
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of the N-terminal domain of FliI ATPase in bacterial flagellar protein export.
    Okabe M; Minamino T; Imada K; Namba K; Kihara M
    FEBS Lett; 2009 Feb; 583(4):743-8. PubMed ID: 19174164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for the ATPase activity of CFTR.
    Cheung JC; Kim Chiaw P; Pasyk S; Bear CE
    Arch Biochem Biophys; 2008 Aug; 476(1):95-100. PubMed ID: 18417076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of redox and chelating agents on the properties of chloroplast ATPase].
    Gol'dfel'd MG; Dmitrovskiĭ LG; Bliumenfel'd LA
    Mol Biol (Mosk); 1982; 16(1):183-9. PubMed ID: 6122158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA.
    Dürr H; Körner C; Müller M; Hickmann V; Hopfner KP
    Cell; 2005 May; 121(3):363-73. PubMed ID: 15882619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.