These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 4260267)

  • 1. A simple enzymic determination of the specific 14 C (1) -labelling of 6-phosphogluconate, glucose 6-phosphate, fructose 6-phosphate and glucose.
    Lange K; Keller K; Kolbe H
    Naunyn Schmiedebergs Arch Pharmacol; 1972; 272(4):454-7. PubMed ID: 4260267
    [No Abstract]   [Full Text] [Related]  

  • 2. [Studies of lipogenesis by labeled precursors in the pregnant rat. II. Studies with glucose-C 14 (U), fructose-C 14 (U) and glucose-6-P C 14 (U)].
    Zanardi E; Di Fabio C; Giordano G; Flamigni C
    Riv Ital Ginecol; 1966 Dec; 50(12):818-29. PubMed ID: 6011856
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of phosphofructokinase in the utilization of glucose by Escherichia coli.
    Kornberg HL; Smith J
    Nature; 1970 Jul; 227(5253):44-6. PubMed ID: 4246367
    [No Abstract]   [Full Text] [Related]  

  • 4. Contribution of the pentose cycle to glucose metabolism by insects.
    Chefurka W; Horie Y; Robinson JR
    Comp Biochem Physiol; 1970 Nov; 37(2):143-65. PubMed ID: 5484076
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanism for regulating the distribution of glucose carbon between the Embden-Meyerhof and hexose-monophosphate pathways in Streptococcus faecalis.
    Brown AT; Wittenberger CL
    J Bacteriol; 1971 May; 106(2):456-67. PubMed ID: 4396792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The accumulation of glucose 6-phosphate from glucose and its effect in an Escherichia coli mutant lacking phosphoglucose isomerase and glucose 6-phosphate dehydrogenase.
    Fraenkel DG
    J Biol Chem; 1968 Dec; 243(24):6451-7. PubMed ID: 4302393
    [No Abstract]   [Full Text] [Related]  

  • 7. The rate of utilization of glucose via hexosemonophosphate shunt in brain.
    Gaitonde MK; Evison E; Evans GM
    J Neurochem; 1983 Nov; 41(5):1253-60. PubMed ID: 6619864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the uptake of hexose phosphates. II. The induction of the glucose 6-phosphate transport system by exogenous but not by endogenously formed glucose 6-phosphate.
    Dietz GW; Heppel LA
    J Biol Chem; 1971 May; 246(9):2885-90. PubMed ID: 4928894
    [No Abstract]   [Full Text] [Related]  

  • 9. Localization of glucose, gluconate, and glucose-6-phosphate oxidation systems in extracts of Pseudomonas fluorescens.
    EAGON RG
    Can J Microbiol; 1958 Feb; 4(1):1-7. PubMed ID: 13500263
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of hexose phosphate metabolism in Acetobacter xylinum.
    Weinhouse H; Benziman M
    Biochem J; 1974 Mar; 138(3):537-42. PubMed ID: 4429547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state concentrations of glucose-6-phosphate, 6-phosphogluconate, and reduced nicotinamide adenine dinucleotide phosphate in strains of Escherichia coli sensitive and resistant to catabolite repression.
    Hsie AW; Rickenberg HV; Schulz DW; Kirsch WM
    J Bacteriol; 1969 Jun; 98(3):1407-8. PubMed ID: 4389233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pattern of utilization of respiratory metabolic intermediates by preimplantation rabbit embryos in vitro.
    Daniel JC
    Exp Cell Res; 1967 Sep; 47(3):619-24. PubMed ID: 6054032
    [No Abstract]   [Full Text] [Related]  

  • 13. The dissimilation of glucose and gluconate by Acetobacter xylinum. 1. The origin and the fate of triose phosphate.
    White GA; Wang CH
    Biochem J; 1964 Feb; 90(2):408-23. PubMed ID: 4220768
    [No Abstract]   [Full Text] [Related]  

  • 14. [The metabolism of damaged tissue. XIV. Glucose, fructose and glucose-6-phosphate in the liver and mucles of normal and alloxan diabetic mice after glucose, fructose and glucose 6-phosphate loading].
    THIELMANN K; BLUME E; KRAUL M; FRUNDER H
    Hoppe Seylers Z Physiol Chem; 1960 Dec; 322():241-53. PubMed ID: 13776325
    [No Abstract]   [Full Text] [Related]  

  • 15. Oxidative metabolism of glucose, fructose and galactose by normal and glucose-6-phosphate dehydrogenase-deficient human red cell haemolysates.
    Sturman JA
    Clin Chim Acta; 1969 Oct; 26(1):135-40. PubMed ID: 4391029
    [No Abstract]   [Full Text] [Related]  

  • 16. Alternative pathways of carbohydrate utilization in pseudomonads.
    Lessie TG; Phibbs PV
    Annu Rev Microbiol; 1984; 38():359-88. PubMed ID: 6388497
    [No Abstract]   [Full Text] [Related]  

  • 17. [Studies of carbohydrate metabolism with hydrogen-labelling, V. Measurement of T-fixation in ethanol following yeast fermentation in H2O-HOT or with different T-labelled sugars].
    Simon H; Medina R
    Z Naturforsch B; 1968 Mar; 23(3):326-9. PubMed ID: 4385716
    [No Abstract]   [Full Text] [Related]  

  • 18. [Level of glucose, glucose-6-phosphate, fructose-6-phosphate, lactate and pyruvate in muscle tissue in chronic uremia].
    Guarnieri GF; Bergström J; Campanacci L; Faccini L; Harris RC; Hultman E; Meani A
    G Clin Med; 1971 May; 52(5):353-68. PubMed ID: 5143392
    [No Abstract]   [Full Text] [Related]  

  • 19. Kinetics of transport of glucose, fructose, and mannitol by Pseudomonas aeruginosa.
    Eagon RG; Phibbs PV
    Can J Biochem; 1971 Sep; 49(9):1031-41. PubMed ID: 5003580
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of acidosis on utilization of fructose and glucose in the isolated rat diaphragm.
    MACKLER B; GUEST GM
    Am J Physiol; 1953 Sep; 174(3):487-90. PubMed ID: 13092279
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.