These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 4260761)

  • 1. A molecular model for the proteolysis of human fibrinogen by plasmin.
    Mills DA
    Biochim Biophys Acta; 1972 May; 263(3):619-30. PubMed ID: 4260761
    [No Abstract]   [Full Text] [Related]  

  • 2. Subunit structure of the plasmin-induced degradation products of crosslinked fibrin.
    Gaffney PJ; Brasher M
    Biochim Biophys Acta; 1973 Jan; 295(1):308-13. PubMed ID: 4265363
    [No Abstract]   [Full Text] [Related]  

  • 3. Localisation of carbohydrate in the subunits of human fibinogen and its plasmin induced fragments.
    Gaffney PJ
    Biochim Biophys Acta; 1972 Apr; 263(2):453-8. PubMed ID: 4113166
    [No Abstract]   [Full Text] [Related]  

  • 4. Plasmic degradation of human fibrinogen. I. Structural characterization of degradation products.
    Furlan M; Beck EA
    Biochim Biophys Acta; 1972 May; 263(3):631-44. PubMed ID: 4260762
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of plasmin on the subunit structure of human fibrin.
    Pizzo SV; Schwartz ML; Hill RL; McKee PA
    J Biol Chem; 1973 Jul; 248(13):4574-83. PubMed ID: 4268861
    [No Abstract]   [Full Text] [Related]  

  • 6. Structure of plasmic degradation products of human fibrinogen. Fibrinopeptide and polypeptide chain analysis.
    Budzynski AZ; Marder VJ; Shainoff JR
    J Biol Chem; 1974 Apr; 249(7):2294-302. PubMed ID: 4131967
    [No Abstract]   [Full Text] [Related]  

  • 7. The initial macromolecular derivatives of human fibrinogen produced by plasmin.
    Mills D; Karpatkin S
    Biochim Biophys Acta; 1972 Jun; 271(1):163-73. PubMed ID: 4261029
    [No Abstract]   [Full Text] [Related]  

  • 8. The essential covalent structure of human fibrinogen evinced by analysis of derivatives formed during plasmic hydrolysis.
    Mosesson MW; Finlayson JS; Galanakis DK
    J Biol Chem; 1973 Nov; 248(22):7913-29. PubMed ID: 4127218
    [No Abstract]   [Full Text] [Related]  

  • 9. Fate of fibrinopeptides in the reaction between human plasmin and fibrinogen.
    Lahiri B; Shainoff JR
    Biochim Biophys Acta; 1973 Mar; 303(1):161-70. PubMed ID: 4267201
    [No Abstract]   [Full Text] [Related]  

  • 10. High molecular weight products of the late stage of fibrinogen proteolysis by plasmin and their structural relation to the fibrinogen molecule.
    Budzyński AZ; Stahl M; Kopeć M; Latallo ZS; Wegrzynowicz Z; Kowalski E
    Biochim Biophys Acta; 1967 Oct; 147(2):313-23. PubMed ID: 4229214
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of plasmin on the subunit structure of human fibrinogen.
    Pizzo SV; Schwartz ML; Hill RL; McKee PA
    J Biol Chem; 1972 Feb; 247(3):636-45. PubMed ID: 4258027
    [No Abstract]   [Full Text] [Related]  

  • 12. Isolation and characterization of N-terminal fragments obtained by plasmin digestion of human fibrinogen.
    Iwanaga S; Wallén P; Gröndahl NJ; Henschan A; Blombäck B
    Biochim Biophys Acta; 1967 Dec; 147(3):606-9. PubMed ID: 4230076
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterisation of large fragments rich in disulphide bridges from CNBr-treated products of exhaustive proteolysis of fibrinogen by plasmin.
    Dudek-Wojciechowska GA; Kloczewiak M; Latallo ZS; Kopeć M
    Biochim Biophys Acta; 1973 Feb; 295(2):536-42. PubMed ID: 4266974
    [No Abstract]   [Full Text] [Related]  

  • 14. Molecular weight analysis of fibrinogen and fibrin chains by an improved sodium dodecyl sulfate gel electrophoresis method.
    McDonagh J; Messel H; McDonagh RP; Murano G; Blombäck B
    Biochim Biophys Acta; 1972 Jan; 257(1):135-42. PubMed ID: 5009823
    [No Abstract]   [Full Text] [Related]  

  • 15. The NH2-terminal amino acids of the fibrinogen degradation products. Implications for fibrinogen structure.
    Marder VJ; Budzynski AZ
    Thromb Diath Haemorrh Suppl; 1973; 56():127-35. PubMed ID: 4281939
    [No Abstract]   [Full Text] [Related]  

  • 16. Fibrin and fibrinogen proteolysis products: comparison between gel filtration and SDS polyacrylamide electrophoresis analysis.
    Alkjaersig N; Davies A; Fletcher A
    Thromb Haemost; 1977 Aug; 38(2):524-5. PubMed ID: 145666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation and comparison of macromolecular end products of fibrinogen and fibrin proteolysis by plasmin.
    Dudek GA; Kloczewiak M; Budzyński AZ; Latallo ZS; Kopeć M
    Biochim Biophys Acta; 1970 Jul; 214(1):44-51. PubMed ID: 4249862
    [No Abstract]   [Full Text] [Related]  

  • 18. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis studies on lobster fibrinogen and fibrin.
    Doolittle RF; Fuller GM
    Biochim Biophys Acta; 1972 May; 263(3):805-9. PubMed ID: 5034221
    [No Abstract]   [Full Text] [Related]  

  • 19. Factors influencing the structure of terminal plasmin degradation products of human fibrinogen and fibrin.
    Nieuwenhuizen W; Vermond A; Haverkate F
    Biochim Biophys Acta; 1981 Feb; 667(2):321-7. PubMed ID: 6452172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human fibrinogen heterogeneities. I. Structural and related studies of plasma fibrinogens which are high solubility catabolic intermediates.
    Mosesson MW; Finlayson JS; Umfleet RA; Galanakis D
    J Biol Chem; 1972 Aug; 247(16):5210-9. PubMed ID: 4262568
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.