These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 4261065)
61. [Mechanism of the change in regimen of working hyperemia of the muscles of the human forearm on increasing the load]. Baraz LA; Veselova EV; MeshcherskiÄ EL; Khaiutin VM Fiziol Zh SSSR Im I M Sechenova; 1973 Apr; 59(3):578-83. PubMed ID: 4746212 [No Abstract] [Full Text] [Related]
62. [Mechanisms of functional hyperemia in skeletal muscle]. Nicolaysen G Nord Med; 1971 Dec; 86(48):1416-20. PubMed ID: 4943944 [No Abstract] [Full Text] [Related]
64. Tissue hyperosmolality as a mediator of vasodilatation and transcapillary fluid flux in exercising skeletal muscle. Lundvall J Acta Physiol Scand Suppl; 1972; 379():1-142. PubMed ID: 4509193 [No Abstract] [Full Text] [Related]
65. The effect of hyperosmolarity on intacet and isolated vascular smooth muscle. Possible role in exercise hyperemia. Mellander S; Johansson B; Gray S; Jonsson O; Lundvall J; Ljung B Angiologica; 1967; 4(6):310-22. PubMed ID: 6075769 [No Abstract] [Full Text] [Related]
66. Vascular responses to norepinephrine, angiotensin, vasopressin and serotonin. Abboud FM Fed Proc; 1968; 27(6):1391-5. PubMed ID: 4302173 [No Abstract] [Full Text] [Related]
67. Skeletal muscle vasoconstriction produced by prostaglandin synthesis inhibitors; dependence on pump perfusion. Falotico R; Zimmerman BG Prostaglandins; 1981 Jun; 21(6):917-32. PubMed ID: 6794097 [TBL] [Abstract][Full Text] [Related]
69. Untoward hemodynamic effects of intra-arterial injections of vasodilator drugs on the muscle circulation in the dog hind limb with experimental arterial occlusion. Lambert J; Lambert PJ Angiology; 1967 Jul; 18(7):415-27. PubMed ID: 6028457 [No Abstract] [Full Text] [Related]
70. CGRP-mediated changes in segmental resistances in the canine forelimb. Dobbins DE Microcirc Endothelium Lymphatics; 1990 Dec; 6(6):465-81. PubMed ID: 2099388 [TBL] [Abstract][Full Text] [Related]
71. Electron microscopy of ouabain-inhibited, potassium-dependent transport adenosine triphosphatase activity in schistosome sporocysts. Krupa PL; Lewis LM; Del Vecchio P Ann N Y Acad Sci; 1975; 266():465-9. PubMed ID: 143226 [No Abstract] [Full Text] [Related]
72. [Species differences in inhibition of (Na+ + K+)-activated ATPase by ouabain in the isolated membranes]. Eguchi N Nihon Yakurigaku Zasshi; 1971 Jul; 67(4):362-73. PubMed ID: 4255840 [No Abstract] [Full Text] [Related]
73. Potassium-induced relaxation as an indicator of Na+-K+ ATPase activity in vascular smooth muscle. Webb RC; Bohr DF Blood Vessels; 1978; 15(1-3):198-207. PubMed ID: 147117 [TBL] [Abstract][Full Text] [Related]
74. Studies on the interaction of ouabain and other cardio-active steroids with sodium-potassium-activated adenosine triphosphatase. Albers RW; Koval GJ; Siegel Mol Pharmacol; 1968 Jul; 4(4):324-36. PubMed ID: 4232893 [No Abstract] [Full Text] [Related]
76. Effects of sodium and potassium on binding of ouabain to the transport adenosine triphosphatase. Inagaki C; Lindenmayer GE; Schwartz A J Biol Chem; 1974 Aug; 249(16):5135-40. PubMed ID: 4277468 [No Abstract] [Full Text] [Related]
77. [Interrelation of acetylcholinesterase and transport ATPase in rat brain microsomes]. Kometiani ZP; Kalandarishvili AA Biofizika; 1969; 14(2):213-8. PubMed ID: 4249367 [No Abstract] [Full Text] [Related]
78. Clinical disorders of potassium homeostasis. Hyperkalemia and hypokalemia. Phillips SL; Polzin DJ Vet Clin North Am Small Anim Pract; 1998 May; 28(3):545-64. PubMed ID: 9597714 [TBL] [Abstract][Full Text] [Related]